839 research outputs found

    Single-Board-Computer Clusters for Cloudlet Computing in Internet of Things

    Get PDF
    The number of connected sensors and devices is expected to increase to billions in the near future. However, centralised cloud-computing data centres present various challenges to meet the requirements inherent to Internet of Things (IoT) workloads, such as low latency, high throughput and bandwidth constraints. Edge computing is becoming the standard computing paradigm for latency-sensitive real-time IoT workloads, since it addresses the aforementioned limitations related to centralised cloud-computing models. Such a paradigm relies on bringing computation close to the source of data, which presents serious operational challenges for large-scale cloud-computing providers. In this work, we present an architecture composed of low-cost Single-Board-Computer clusters near to data sources, and centralised cloud-computing data centres. The proposed cost-efficient model may be employed as an alternative to fog computing to meet real-time IoT workload requirements while keeping scalability. We include an extensive empirical analysis to assess the suitability of single-board-computer clusters as cost-effective edge-computing micro data centres. Additionally, we compare the proposed architecture with traditional cloudlet and cloud architectures, and evaluate them through extensive simulation. We finally show that acquisition costs can be drastically reduced while keeping performance levels in data-intensive IoT use cases.Ministerio de Economía y Competitividad TIN2017-82113-C2-1-RMinisterio de Economía y Competitividad RTI2018-098062-A-I00European Union’s Horizon 2020 No. 754489Science Foundation Ireland grant 13/RC/209

    A Hybrid Approach for Data Analytics for Internet of Things

    Full text link
    The vision of the Internet of Things is to allow currently unconnected physical objects to be connected to the internet. There will be an extremely large number of internet connected devices that will be much more than the number of human being in the world all producing data. These data will be collected and delivered to the cloud for processing, especially with a view of finding meaningful information to then take action. However, ideally the data needs to be analysed locally to increase privacy, give quick responses to people and to reduce use of network and storage resources. To tackle these problems, distributed data analytics can be proposed to collect and analyse the data either in the edge or fog devices. In this paper, we explore a hybrid approach which means that both innetwork level and cloud level processing should work together to build effective IoT data analytics in order to overcome their respective weaknesses and use their specific strengths. Specifically, we collected raw data locally and extracted features by applying data fusion techniques on the data on resource constrained devices to reduce the data and then send the extracted features to the cloud for processing. We evaluated the accuracy and data consumption over network and thus show that it is feasible to increase privacy and maintain accuracy while reducing data communication demands.Comment: Accepted to be published in the Proceedings of the 7th ACM International Conference on the Internet of Things (IoT 2017

    Energy Efficient Parallel K-Means Clustering for an Intel Hybrid Multi-Chip Package

    Get PDF
    International audienceFPGA devices have been proving to be good candidates to accelerate applications from different research topics. For instance, machine learning applications such as K-Means clustering usually relies on large amount of data to be processed, and, despite the performance offered by other architectures, FPGAs can offer better energy efficiency. With that in mind, Intel ® has launched a platform that integrates a multicore and an FPGA in the same package, enabling low latency and coherent fine-grained data offload. In this paper, we present a parallel implementation of the K-Means clustering algorithm, for this novel platform, using OpenCL language, and compared it against other platforms. We found that the CPU+FPGA platform was more energy efficient than the CPU-only approach from 70.71% to 85.92%, with Standard and Tiny input sizes respectively, and up to 68.21% of performance improvement was obtained with Tiny input size. Furthermore, it was up to 7.2× more energy efficient than an Intel® Xeon Phi ™, 21.5× than a cluster of Raspberry Pi boards, and 3.8× than the low-power MPPA-256 architecture, when the Standard input size was used

    Management and Security of IoT systems using Microservices

    Get PDF
    Devices that assist the user with some task or help them to make an informed decision are called smart devices. A network of such devices connected to internet are collectively called as Internet of Things (IoT). The applications of IoT are expanding exponentially and are becoming a part of our day to day lives. The rise of IoT led to new security and management issues. In this project, we propose a solution for some major problems faced by the IoT devices, including the problem of complexity due to heterogeneous platforms and the lack of IoT device monitoring for security and fault tolerance. We aim to solve the above issues in a microservice architecture. We build a data pipeline for IoT devices to send data through a messaging platform Kafka and monitor the devices using the collected data by making real time dashboards and a machine learning model to give better insights of the data. For proof of concept, we test the proposed solution on a heterogeneous cluster, including Raspberry Pi’s and IoT devices from different vendors. We validate our design by presenting some simple experimental results
    corecore