30,055 research outputs found

    Network intrusion detection system for DDoS attacks in ICS using deep autoencoders

    Get PDF
    Anomaly detection in industrial control and cyber-physical systems has gained much attention over the past years due to the increasing modernisation and exposure of industrial environments. Current dangers to the connected industry include the theft of industrial intellectual property, denial of service, or the compromise of cloud components; all of which might result in a cyber-attack across the operational network. However, most scientific work employs device logs, which necessitate substantial understanding and preprocessing before they can be used in anomaly detection. In this paper, we propose a network intrusion detection system (NIDS) architecture based on a deep autoencoder trained on network flow data, which has the advantage of not requiring prior knowledge of the network topology or its underlying architecture. Experimental results show that the proposed model can detect anomalies, caused by distributed denial of service attacks, providing a high detection rate and low false alarms, outperforming the state-of-the-art and a baseline model in an unsupervised learning environment. Furthermore, the deep autoencoder model can detect abnormal behaviour in legitimate devices after an attack. We also demonstrate the suitability of the proposed NIDS in a real industrial plant from the alimentary sector, analysing the false positive rate and the viability of the data generation, filtering and preprocessing procedure for a near real time scenario. The suggested NIDS architecture is a low-cost solution that uses only fifteen network-based features, requires minimal processing, operates in unsupervised mode, and is straightforward to deploy in real-world scenarios.Axencia Galega de Innovación | Ref. IN854A 2019/15Centro para el Desarrollo Tecnológico Industrial | Ref. CER-20191012Agencia Estatal de Investigación | Ref. MTM2017-89422-PFinanciado para publicación en acceso aberto: Universidade de Vigo/CISU

    Denial of service attacks and challenges in broadband wireless networks

    Get PDF
    Broadband wireless networks are providing internet and related services to end users. The three most important broadband wireless technologies are IEEE 802.11, IEEE 802.16, and Wireless Mesh Network (WMN). Security attacks and vulnerabilities vary amongst these broadband wireless networks because of differences in topologies, network operations and physical setups. Amongst the various security risks, Denial of Service (DoS) attack is the most severe security threat, as DoS can compromise the availability and integrity of broadband wireless network. In this paper, we present DoS attack issues in broadband wireless networks, along with possible defenses and future directions

    An Energy Aware and Secure MAC Protocol for Tackling Denial of Sleep Attacks in Wireless Sensor Networks

    Get PDF
    Wireless sensor networks which form part of the core for the Internet of Things consist of resource constrained sensors that are usually powered by batteries. Therefore, careful energy awareness is essential when working with these devices. Indeed,the introduction of security techniques such as authentication and encryption, to ensure confidentiality and integrity of data, can place higher energy load on the sensors. However, the absence of security protection c ould give room for energy drain attacks such as denial of sleep attacks which have a higher negative impact on the life span ( of the sensors than the presence of security features. This thesis, therefore, focuses on tackling denial of sleep attacks from two perspectives A security perspective and an energy efficiency perspective. The security perspective involves evaluating and ranking a number of security based techniques to curbing denial of sleep attacks. The energy efficiency perspective, on the other hand, involves exploring duty cycling and simulating three Media Access Control ( protocols Sensor MAC, Timeout MAC andTunableMAC under different network sizes and measuring different parameters such as the Received Signal Strength RSSI) and Link Quality Indicator ( Transmit power, throughput and energy efficiency Duty cycling happens to be one of the major techniques for conserving energy in wireless sensor networks and this research aims to answer questions with regards to the effect of duty cycles on the energy efficiency as well as the throughput of three duty cycle protocols Sensor MAC ( Timeout MAC ( and TunableMAC in addition to creating a novel MAC protocol that is also more resilient to denial of sleep a ttacks than existing protocols. The main contributions to knowledge from this thesis are the developed framework used for evaluation of existing denial of sleep attack solutions and the algorithms which fuel the other contribution to knowledge a newly developed protocol tested on the Castalia Simulator on the OMNET++ platform. The new protocol has been compared with existing protocols and has been found to have significant improvement in energy efficiency and also better resilience to denial of sleep at tacks Part of this research has been published Two conference publications in IEEE Explore and one workshop paper
    corecore