1,113 research outputs found

    A neural probe with up to 966 electrodes and up to 384 configurable channels in 0.13 μm SOI CMOS

    Get PDF
    In vivo recording of neural action-potential and local-field-potential signals requires the use of high-resolution penetrating probes. Several international initiatives to better understand the brain are driving technology efforts towards maximizing the number of recording sites while minimizing the neural probe dimensions. We designed and fabricated (0.13-μm SOI Al CMOS) a 384-channel configurable neural probe for large-scale in vivo recording of neural signals. Up to 966 selectable active electrodes were integrated along an implantable shank (70 μm wide, 10 mm long, 20 μm thick), achieving a crosstalk of −64.4 dB. The probe base (5 × 9 mm2) implements dual-band recording and a 1

    An x-band slow-wave T/R switch in 0.25-μm SiGe BiCMOS

    Get PDF

    Design of Multi Gb/s Monolithically Integrated Photodiodes and Multi-Stage Transimpedance Amplifiers in Thin-Film SOI CMOS Technology

    Get PDF
    The development of new integrated high-speed Si receivers is requested for short distance optical data link and emerging optical storage (OS) systems, notably for the Gb/s Ethernet standard [1] - [8] and Blue DVD (Blu-Ray, HDDVD) [3], [4], [9]. As requirements on bandwidth, gain, power consumption as well as low read-out noise and cost are quite severe, an optimal design strategy of a monolithically integrated solution, i.e. with on-chip photodetector and transimpedance amplifier (TIA), is required. In optical communication, however, non integrated detectors are usually employed [2] - [8] since the particular indirect energy band properties of Silicon make this semiconductor not very efficient for optical reception at 850nm wavelength. As Si is the most widely used and low cost semiconductor material in electronics and due to the availability of low-cost 850nm transmitters, there is yet a great interest and challenge to integrate such receivers. 1 to 10 Gb/s, high sensitivity and low complexity, low-cost silicon photodetectors for the monolithic integration of optical receivers for short distance applications at 850nm are really an issue as the Si absorption thickness required for high-speed (low transit time and low capacitance) favors thin-film technologies for which the responsivity is low. Some solutions exist but at the price of more costly and complex fabrication processes [10-16]. At the system level, owing to its low dark current (pA range) [17], low capacitor (10fF) for the photodetector [1] and possibility to integrate this detector with high-performance low-capacitance transistors, global thin-film SOI monolithically integrated photoreceivers have potentially higher gain and lower noise performances which in turn, as we will show here, can increase the C-sensitivity and alleviate this requirement on the photodetector itself. Furthermore only SOI photodiodes have so far achieved bandwidth compatible with the 10Gb/s specification and even higher data rate among the "easy to integrate" Si photodetectors [1], [15], [16] and [18]. In the blue and UV wavelengths, these diodes achieve a high responsivity [17] and then combine all the advantages of high speed, low dark current and finally high sensitivity [1]. This makes SOI receivers the best candidate for blue DVD applications and future optical storage generation. This also suggests that blue wavelength for multi Gb/s short reach optical communication could be used in a near future under the condition that the recent progresses in blue emitting sources make them available [17, 19]. We present here a top-down design methodology, fully validated by Eldo circuit simulations [20] and experimental measurements, which allows to predict and optimize, starting from the speed requirements and the technological parameters, the architecture and performances of the receiver. Our approach generalizes the one proposed in [21] to all inversion regimes. In addition our design strategy is based on the gm id methodology [22] and allows one to optimize the diode and the transimpedance in a simultaneous way. Thanks to this modeling and the low capacitance of thin-film integrated SOI photodiodes, we have optimized various monolithic optical front-end suitable for 1 to 10 Gb/s short distance communication or Blue DVD applications that show the potentials of 0.13μm Partially-Depleted (PD) SOI CMOS implementation in terms of gain, sensitivity, power consumption, area and noise. In section 2 (Optical Receivers Basics), the simple resistor system is first presented as well as its limitations. The transimpedance amplifier is then introduced and its basic theory and concepts such as transimpedance gain, bandwidth and stability are derived. Important parameters to compare transimpedance amplifiers are also discussed as well as architectures most often used in the high speed communication area. Then in section "Design of Multistage Transimpedance Amplifiers", we present our top-down methodology to design transimpedance amplifiers in the case where the voltage gain of the voltage amplifier used in the TIA is independent of the feedback resistor Rf. This is usually the case when the TIA bandwidth is not too close to the transistors frequency limit ft of a given technology and leads to a multi-stage approach. Our design procedure is then applied to the design of a 3 stages 1GHz bandwidth transimpedance amplifier in a 0.13 μm PD-SOI CMOS technology. Finally, in section "Single stage Transimpedance Amplifier Modeling", we present a top-down methodology to design transimpedance amplifiers when the voltage gain depends on Rf. This is the case for very high-speed singlestage transimpedance amplifiers. Our design procedure is then applied to the design of a single stage 10GHz bandwidth transimpedance amplifier in a 0.13 μm PD-SOI CMOS technology and to the design of a 1GHz bandwidth single stage TIA in a 0.5 μm FD-SOI CMOS technology

    Vidutinių dažnių 5G belaidžių tinklų galios stiprintuvų tyrimas

    Get PDF
    This dissertation addresses the problems of ensuring efficient radio fre-quency transmission for 5G wireless networks. Taking into account, that the next generation 5G wireless network structure will be heterogeneous, the device density and their mobility will increase and massive MIMO connectivity capability will be widespread, the main investigated problem is formulated – increasing the efficiency of portable mid-band 5G wireless network CMOS power amplifier with impedance matching networks. The dissertation consists of four parts including the introduction, 3 chapters, conclusions, references and 3 annexes. The investigated problem, importance and purpose of the thesis, the ob-ject of the research methodology, as well as the scientific novelty are de-fined in the introduction. Practical significance of the obtained results, defended state-ments and the structure of the dissertation are also included. The first chapter presents an extensive literature analysis. Latest ad-vances in the structure of the modern wireless network and the importance of the power amplifier in the radio frequency transmission chain are de-scribed in detail. The latter is followed by different power amplifier archi-tectures, parameters and their improvement techniques. Reported imped-ance matching network design methods are also discussed. Chapter 1 is concluded distinguishing the possible research vectors and defining the problems raised in this dissertation. The second chapter is focused around improving the accuracy of de-signing lumped impedance matching network. The proposed methodology of estimating lumped inductor and capacitor parasitic parameters is dis-cussed in detail provi-ding complete mathematical expressions, including a summary and conclusions. The third chapter presents simulation results for the designed radio fre-quency power amplifiers. Two variations of Doherty power amplifier archi-tectures are presented in the second part, covering the full step-by-step de-sign and simulation process. The latter chapter is concluded by comparing simulation and measurement results for all designed radio frequency power amplifiers. General conclusions are followed by an extensive list of references and a list of 5 publications by the author on the topic of the dissertation. 5 papers, focusing on the subject of the discussed dissertation, have been published: three papers are included in the Clarivate Analytics Web of Sci-ence database with a citation index, one paper is included in Clarivate Ana-lytics Web of Science database Conference Proceedings, and one paper has been published in unreferred international conference preceedings. The au-thor has also made 9 presentations at 9 scientific conferences at a national and international level.Dissertatio

    Low-Noise Speed-Optimized Large Area CMOS Avalanche Photodetector for Visible Light Communication

    Get PDF
    Mean-gain and excess-noise measurements are presented for a 350 × 350 μm 2 P+/N-well/P-sub and a 270 × 270 μm 2 N-well/P-sub avalanche photodetectors fabricated using 0.13-μm CMOS technology. The active area of the P+/N-well/P-sub device was divided into multiple subsections to decrease transit time and increase speed. For the P+/N-well structure, remarkably low excess-noise factors of 4.1 and 4 were measured at a mean gain of 16 corresponding to a k value of approximately 0.1, using a 542 (633) nm laser. For a variant N-well/P-sub structure, excess-noise factors of 6.5 and 6.2 were measured at a mean-gain of 16 corresponding to a k value of approximately 0.3. The proposed CMOS APDs with high gain, low noise, low avalanche breakdown voltage (below approximately 12 V) and low dark-currents (approximately nA) would be attractive for low-cost optical receivers in visible-light communication systems

    High frequency of low noise amplifier architecture for WiMAX application: A review

    Get PDF
    The low noise amplifier (LNA) circuit is exceptionally imperative as it promotes and initializes general execution performance and quality of the mobile communication system. LNA's design in radio frequency (R.F.) circuit requires the trade-off numerous imperative features' including gain, noise figure (N.F.), bandwidth, stability, sensitivity, power consumption, and complexity. Improvements to the LNA's overall performance should be made to fulfil the worldwide interoperability for microwave access (WiMAX) specifications' prerequisites. The development of front-end receiver, particularly the LNA, is genuinely pivotal for long-distance communications up to 50 km for a particular system with particular requirements. The LNA architecture has recently been designed to concentrate on a single transistor, cascode, or cascade constrained in gain, bandwidth, and noise figure

    Microwave and Millimeter-wave Concurrent Multiband Low-Noise Amplifiers and Receiver Front-end in SiGe BiCMOS Technology

    Get PDF
    A fully integrated SiGe BiCMOS concurrent multiband receiver front-end and its building blocks including multiband low-noise amplifiers (LNAs), single-to-differential amplifiers and mixer are presented for various Ku-/K-/Ka-band applications. The proposed concurrent multiband receiver building blocks and receiver front-end achieve the best stopband rejection performances as compared to the existing multiband LNAs and receivers. First, a novel feedback tri-band load composed of two inductor feedback notch filters is proposed to overcome the low Q-factor of integrated passive inductors, and hence it provides superior stopband rejection ratio (SRR). A new 13.5/24/35-GHz concurrent tri-band LNA implementing the feedback tri-band load is presented. The developed tri-band LNA is the first concurrent tri-band LNA operating up to millimeter-wave region. By expanding the operating principle of the feedback tri-band load, a 21.5/36.5-GHz concurrent dual-band LNA with an inductor feedback dual-band load and another 23/36-GHz concurrent dual-band LNA with a new transformer feedback dual-band load are also presented. The latter provides more degrees of freedom for the creation of the stopband and passbands as compared to the former. A 22/36-GHz concurrent dual-band single-to-differential LNA employing a novel single-to-differential transformer feedback dual-band load is presented. The developed LNA is the first true concurrent dual-band single-to-differential amplifier. A novel 24.5/36.5 GHz concurrent dual-band merged single-to-differential LNA and mixer implementing the proposed single-to-differential transformer feedback dual-band load is also presented. With a 21-GHz LO signal, the down-converted dual IF bands are located at 3.5/15.5 GHz for two passband signals at 24.5/36.5 GHz, respectively. The proposed merged LNA and mixer is the first fully integrated concurrent dual-band mixer operating up to millimeter-wave frequencies without using any switching mechanism. Finally, a 24.5/36.5-GHz concurrent dual-band receiver front-end is proposed. It consists of the developed concurrent dual-band LNA using the single-to-single transformer feedback dual-band load and the developed concurrent dual-band merged LNA and mixer employing the single-to-differential transformer feedback dual-band load. The developed concurrent dual-band receiver front-end achieves the highest gain and the best NF performances with the largest SRRs, while operating at highest frequencies up to millimeter-wave region, among the concurrent dual-band receivers reported to date

    Microwave and Millimeter-wave Concurrent Multiband Low-Noise Amplifiers and Receiver Front-end in SiGe BiCMOS Technology

    Get PDF
    A fully integrated SiGe BiCMOS concurrent multiband receiver front-end and its building blocks including multiband low-noise amplifiers (LNAs), single-to-differential amplifiers and mixer are presented for various Ku-/K-/Ka-band applications. The proposed concurrent multiband receiver building blocks and receiver front-end achieve the best stopband rejection performances as compared to the existing multiband LNAs and receivers. First, a novel feedback tri-band load composed of two inductor feedback notch filters is proposed to overcome the low Q-factor of integrated passive inductors, and hence it provides superior stopband rejection ratio (SRR). A new 13.5/24/35-GHz concurrent tri-band LNA implementing the feedback tri-band load is presented. The developed tri-band LNA is the first concurrent tri-band LNA operating up to millimeter-wave region. By expanding the operating principle of the feedback tri-band load, a 21.5/36.5-GHz concurrent dual-band LNA with an inductor feedback dual-band load and another 23/36-GHz concurrent dual-band LNA with a new transformer feedback dual-band load are also presented. The latter provides more degrees of freedom for the creation of the stopband and passbands as compared to the former. A 22/36-GHz concurrent dual-band single-to-differential LNA employing a novel single-to-differential transformer feedback dual-band load is presented. The developed LNA is the first true concurrent dual-band single-to-differential amplifier. A novel 24.5/36.5 GHz concurrent dual-band merged single-to-differential LNA and mixer implementing the proposed single-to-differential transformer feedback dual-band load is also presented. With a 21-GHz LO signal, the down-converted dual IF bands are located at 3.5/15.5 GHz for two passband signals at 24.5/36.5 GHz, respectively. The proposed merged LNA and mixer is the first fully integrated concurrent dual-band mixer operating up to millimeter-wave frequencies without using any switching mechanism. Finally, a 24.5/36.5-GHz concurrent dual-band receiver front-end is proposed. It consists of the developed concurrent dual-band LNA using the single-to-single transformer feedback dual-band load and the developed concurrent dual-band merged LNA and mixer employing the single-to-differential transformer feedback dual-band load. The developed concurrent dual-band receiver front-end achieves the highest gain and the best NF performances with the largest SRRs, while operating at highest frequencies up to millimeter-wave region, among the concurrent dual-band receivers reported to date

    CIRCUIT MODULES FOR BROADBAND CMOS SIX-PORT SYSTEMS

    Get PDF
    This dissertation investigates four circuit modules used in a CMOS integrated six-port measurement system. The first circuit module is a wideband power source generator, which can be implemented with a voltage controlled ring oscillator. The second circuit module is a low-power 0.5 GHz - 20.5 GHz power detector with an embedded amplifier and a wideband quasi T-coil matching network. The third circuit module is a six-port circuit, which can be implemented with distributed or lumped- lement techniques. The fourth circuit module is the phase sifter used as calibration loads. The theoretical analysis, circuit design, simulated or experimental verifications of each circuit module are also included
    corecore