230 research outputs found

    Quality-of-Service-Adequate Wireless Receiver Design

    Get PDF

    Integration of heterogeneous devices and communication models via the cloud in the constrained internet of things

    Get PDF
    As the Internet of Things continues to expand in the coming years, the need for services that span multiple IoT application domains will continue to increase in order to realize the efficiency gains promised by the IoT. Today, however, service developers looking to add value on top of existing IoT systems are faced with very heterogeneous devices and systems. These systems implement a wide variety of network connectivity options, protocols (proprietary or standards-based), and communication methods all of which are unknown to a service developer that is new to the IoT. Even within one IoT standard, a device typically has multiple options for communicating with others. In order to alleviate service developers from these concerns, this paper presents a cloud-based platform for integrating heterogeneous constrained IoT devices and communication models into services. Our evaluation shows that the impact of our approach on the operation of constrained devices is minimal while providing a tangible benefit in service integration of low-resource IoT devices. A proof of concept demonstrates the latter by means of a control and management dashboard for constrained devices that was implemented on top of the presented platform. The results of our work enable service developers to more easily implement and deploy services that span a wide variety of IoT application domains

    Sub-GHz LPWAN network coexistence, management and virtualization : an overview and open research challenges

    Get PDF
    The IoT domain is characterized by many applications that require low-bandwidth communications over a long range, at a low cost and at low power. Low power wide area networks (LPWANs) fulfill these requirements by using sub-GHz radio frequencies (typically 433 or 868 MHz) with typical transmission ranges in the order of 1 up to 50 km. As a result, a single base station can cover large areas and can support high numbers of connected devices (> 1000 per base station). Notorious initiatives in this domain are LoRa, Sigfox and the upcoming IEEE 802.11ah (or "HaLow") standard. Although these new technologies have the potential to significantly impact many IoT deployments, the current market is very fragmented and many challenges exists related to deployment, scalability, management and coexistence aspects, making adoption of these technologies difficult for many companies. To remedy this, this paper proposes a conceptual framework to improve the performance of LPWAN networks through in-network optimization, cross-technology coexistence and cooperation and virtualization of management functions. In addition, the paper gives an overview of state of the art solutions and identifies open challenges for each of these aspects

    Design And Implementation Of An Autonomous Wireless Sensor-Based Smart Home

    Get PDF
    The Smart home has gained widespread attentions due to its flexible integration into everyday life. This next generation of green home system transparently unifies various home appliances, smart sensors and wireless communication technologies. It can integrate diversified physical sensed information and control various consumer home devices, with the support of active sensor networks having both sensor and actuator components. Although smart homes are gaining popularity due to their energy saving and better living benefits, there is no standardized design for smart homes. In this thesis, a smart home design is put forward that can classify and predict the state of the home utilizing historical data of the home. A wireless sensor network was setup in a home to gather and send data to a sink node. The collected data was utilized to train and test a classification model achieving high accuracy with Support Vector Machine (SVM). SVM was further utilized as a predictor of future home states. Based on the data collection, classification and prediction models, a system was designed that can learn, run with minimal human supervision and detect anomalies in a home. The aforementioned attributes make the system an asset for senior care scenarios

    Minimal Error IEEE 802.15.4 Communication Module for Heart Monitoring Data Transmission in IoT

    Get PDF
    With an estimation of 20 billion devices being connected to the Internet in the coming years, the accuracy and the robustness of the wireless communication modules takes the center stage. The health-care scenario, due to its critical nature, calls for an error free communication. IEEE 802.15.4 is the established standard in the Internet of Things scenario that uses Direct Sequence Spread Spectrum - Offset Quadrature Phase Shift Keying (DSSS-OQPSK) modulation. In this paper, we propose a modified minimal error IEEE 802.15.4 communication system for the IoT applications in health care. The proposed architecture uses Maximum Likelihood based frequency offset estimator that can compensate upto 80ppm of the frequency offset. The detection of the symbols is achieved by the complex correlation of the spread sequence. The Bit Error Rate (BER) performance of the proposed architecture is significantly improved compared to the standard architecture. For example, at BER of 0.01, it achieves a gain of 2db over the standard. The proposed ML estimator for frequency offset performs better in terms of error variance than the existing estimators for IEEE 802.15.4

    Low-Power Wireless for the Internet of Things: Standards and Applications: Internet of Things, IEEE 802.15.4, Bluetooth, Physical layer, Medium Access Control,coexistence, mesh networking, cyber-physical systems, WSN, M2M

    Get PDF
    International audienceThe proliferation of embedded systems, wireless technologies, and Internet protocols have enabled the Internet of Things (IoT) to bridge the gap between the virtual and physical world through enabling the monitoring and actuation of the physical world controlled by data processing systems. Wireless technologies, despite their offered convenience, flexibility, low cost, and mobility pose unique challenges such as fading, interference, energy, and security, which must be carefully addressed when using resource-constrained IoT devices. To this end, the efforts of the research community have led to the standardization of several wireless technologies for various types of application domains depending on factors such as reliability, latency, scalability, and energy efficiency. In this paper, we first overview these standard wireless technologies, and we specifically study the MAC and physical layer technologies proposed to address the requirements and challenges of wireless communications. Furthermore, we explain the use of these standards in various application domains, such as smart homes, smart healthcare, industrial automation, and smart cities, and discuss their suitability in satisfying the requirements of these applications. In addition to proposing guidelines to weigh the pros and cons of each standard for an application at hand, we also examine what new strategies can be exploited to overcome existing challenges and support emerging IoT applications

    Integration of an IEEE802.15.4g compliant transceiver into the Linux-based AMBER platform

    Get PDF
    Nowadays the world is continuously discovering new strategies and methods to effectively organize the enormous quantity of information that has become accessible to us. Internet of Things is considered to be the next important breakthrough technology. In this work we illustrate a whole stack of protocols and software architecture tipically involved in modern IoT systems and report the experience of integrating a transceiver from Texas Instruments into the Amber embedded platform running Linu

    Cyclist training monitoring system based on wireless sensor network

    Get PDF
    Recent innovation of technology in wireless sensor network (WSN) has eased the deployment of WSN in many applications such as health monitoring system. This research presents a cyclist training monitoring system that is equipped with a set of sensors using the WSN technology. This enables continuous monitoring process of cyclist training that can be done anytime and anywhere. A stable and reliable wireless cyclist monitoring system with minimum data loss is vital to establish a smart and efficient sports management program that can lead to better quality outcomes of cyclist training. This cyclist training monitoring system has been developed and tested in real cyclist training environment in velodrome. The system is designed based on WSN that is linked to the cloud network on the Internet. Using TelG node as the basis, customized transceiver nodes are developed to establish the WSN. These nodes have been built with 30% reduction in size from the existing nodes. Seven measurements were conducted to investigate several factors that affect the packet loss rate before the system architecture was constructed. The factors that were taken into account during the measurements are the distance between the transmitter and the receiver, the height and angle of the receiver, the mobility of the transmitter, the transmission power of the transmitter, as well as the packet size and transmission rate. The results from the measurements correspond to the wireless communication theory. Based on the seven measurements, the system architecture was constructed. Several experiments were conducted in a real scenario in velodrome to measure the reliability of the system architecture. It was shown from the experiments that the proposed system is reliable even when the cyclist is moving at high speed which is 30km/h constantly. The packet loss in all experiments conducted is less than 2%, which does not give huge impact to the sensor data transmission. In addition, the results have shown that the proposed system can produce minimum end-to-end delay which is at 11ms when packet size is below 20 bytes which can be neglected

    Remote reconfiguration of FPGA-based wireless sensor nodes for flexible Internet of Things

    Get PDF
    Recently, sensor nodes in Wireless Sensor Networks (WSNs) have been using Field Programmable Gate Arrays (FPGA) for high-speed, low-power processing and reconfigurability. Reconfigurability enables adaptation of functionality and performance to changing requirements. This paper presents an efficient architecture for full remote reconfiguration of FPGA-based wireless sensors. The novelty of the work includes the ability to wirelessly upload new configuration bitstreams to remote sensor nodes using a protocol developed to provide full remote access to the flash memory of the sensor nodes. Results show that the FPGA can be remotely reconfigured in 1.35 s using a bitstream stored in the flash memory. The proposed scheme uses negligible amount of FPGA logic and does not require a dedicated microcontroller or softcore processor. It can help develop truly flexible IoT, where the FPGAs on thousands of sensor nodes can be reprogrammed or new configuration bitstreams uploaded without requiring physical access to the nodes. © 202
    corecore