256 research outputs found

    High performance readout circuits and devices for Lorentz force resonant CMOS-MEMS magnetic sensors

    Get PDF
    In the last decades, sensing capabilities of martphones have greatly improved since the early mobile phones of the 90’s. Moreover, wearables and the automotive industry require increasing electronics and sensing sophistication. In such echnological advance, Micro Electro Mechanical Systems (MEMS) have played an important role as accelerometers and gyroscopes were the first sensors based on MEMS technology massively introduced in the market. In contrast, it still does not exist a commercial MEMS-based compass, even though Lorentz force MEMS magnetometers were first proposed in the late 90’s. Currently, Lorentz force MEMS magnetometers have been under the spotlight as they can offer an integrated solution to nowadays sensing power. As a consequence, great advances have been achieved, but various bottlenecks limit the introduction of Lorentz force MEMS compasses in the market. First, current MEMS magnetometers require high current consumption and high biasing voltages to achieve good sensitivities. Moreover, even though devices with excellent performance and sophistication are found in the literature, there is still a lack of research on the readout electronic circuits, specially in the digital signal processing, and closed loop control. Second, most research outcomes rely on custom MEMS fabrication rocesses to manufacture the devices. This is the same approach followed in current commercial MEMS, but it requires different fabrication processes for the electronics and the MEMS. As a consequence, manufacturing cost is high and sensor performance is affected by the MEMS-electronics interface parasitics. This dissertation presents potential solutions to these issues in order to pave the road to the commercialization of Lorentz force MEMS compasses. First, a complete closed loop, digitally controlled readout system is proposed. The readout circuitry, implemented with off-the-shelf commercial components, and the digital control, on an FPGA, are proposed as a proof of concept of the feasibility, and potential benefits, of such architecture. The proposed system has a measured noise of 550 nT / vHz while the MEMS is biased with 300 µA rms and V = 1 V . Second, various CMOS-MEMS magnetometers have been designed using the BEOL part of the TSMC and SMIC 180 nm standard CMOS processes, and wet and vapor etched. The devices measurement and characterisation is used to analyse the benefits and drawbacks of each design as well as releasing process. Doing so, a high volume manufacturing viability can be performed. Yield values as high as 86% have been obtained for one device manufactured in a SMIC 180 nm full wafer run, having a sensitivity of 2.82 fA/µT · mA and quality factor Q = 7.29 at ambient pressure. While a device manufactured in TSMC 180 nm has Q = 634.5 and a sensitivity of 20.26 fA/µT ·mA at 1 mbar and V = 1 V. Finally, an integrated circuit has been designed that contains all the critical blocks to perform the MEMS signal readout. The MEMS and the electronics have been manufactured using the same die area and standard TSMC 180 nm process in order to reduce parasitics and improve noise and current consumption. Simulations show that a resolution of 8.23 µT /mA for V = 1 V and BW = 10 Hz can be achieved with the designed device.En les últimes dècades, tenint en compte els primers telèfons mòbils dels anys 90, les capacitats de sensat dels telèfons intel·ligents han millorat notablement. A més, la indústria automobilística i de wearables necessiten cada cop més sofisticació en el sensat. Els Micro Electro Mechanical Systems (MEMS) han tingut un paper molt important en aquest avenç tecnològic, ja que acceleròmetres i giroscopis varen ser els primers sensors basats en la tecnologia MEMS en ser introduïts massivament al mercat. En canvi, encara no existeix en la indústria una brúixola electrònica basada en la tecnologia MEMS, tot i que els magnetòmetres MEMS varen ser proposats per primera vegada a finals dels anys 90. Actualment, els magnetòmetres MEMS basats en la força de Lorentz són el centre d'atenció donat que poden oferir una solució integrada a les capacitats de sensat actuals. Com a conseqüència, s'han aconseguit grans avenços encara que existeixen diversos colls d'ampolla que encara limiten la introducció al mercat de brúixoles electròniques MEMS basades en la força de Lorentz. Per una banda, els agnetòmetres MEMS actuals necessiten un consum de corrent i un voltatge de polarització elevats per aconseguir una bona sensibilitat. A més, tot i que a la literatura hi podem trobar dispositius amb rendiments i sofisticació excel·lents, encara existeix una manca de recerca en el circuit de condicionament, especialment de processat digital i control del llaç. Per altra banda, moltes publicacions depenen de processos de fabricació de MEMS fets a mida per fabricar els dispositius. Aquesta és la mateixa aproximació que s'utilitza actualment en la indústria dels MEMS, però té l'inconvenient que requereix processos de fabricació diferents pels MEMS i l’electrònica. Per tant, el cost de fabricació és alt i el rendiment del sensor queda afectat pels paràsits en la interfície entre els MEMS i l'electrònica. Aquesta tesi presenta solucions potencials a aquests problemes amb l'objectiu d'aplanar el camí a la comercialització de brúixoles electròniques MEMS basades en la força de Lorentz. En primer lloc, es proposa un circuit de condicionament complet en llaç tancat controlat digitalment. Aquest s'ha implementat amb components comercials, mentre que el control digital del llaç s'ha implementat en una FPGA, tot com una prova de concepte de la viabilitat i beneficis potencials que representa l'arquitectura proposada. El sistema presenta un soroll de 550 nT / vHz quan el MEMS està polaritzat amb 300 µArms i V = 1 V . En segon lloc, s'han dissenyat varis magnetòmetres CMOS-MEMS utilitzant la part BEOL dels processos CMOS estàndard de TSMC i SMIC 180 nm, que després s'han alliberat amb líquid i gas. La mesura i caracterització dels dispositius s’ha utilitzat per analitzar els beneficis i inconvenients de cada disseny i procés d’alliberament. D'aquesta manera, s'ha pogut realitzar un anàlisi de la viabilitat de la seva fabricació en massa. S'han obtingut valors de yield de fins al 86% per un dispositiu fabricat amb SMIC 180 nm en una oblia completa, amb una sensibilitat de 2.82 fA/µT · mA i un factor de qualitat Q = 7.29 a pressió ambient. Per altra banda, el dispositiu fabricat amb TSMC 180 nm presenta una Q = 634.5 i una sensibilitat de 20.26 fA/µT · mA a 1 mbar amb V = 1 V. Finalment, s'ha dissenyat un circuit integrat que conté tots els blocs per a realitzar el condicionament de senyal del MEMS. El MEMS i l'electrònica s'han fabricat en el mateix dau amb el procés estàndard de TSMC 180 nm per tal de reduir paràsits i millorar el soroll i el consum de corrent. Les simulacions mostren una resolució de 8.23 µT /mA amb V = 1 V i BW = 10 Hz pel dispositiu dissenyat

    Wireless Transceivers for Implantable Microsystems.

    Full text link
    In this thesis, we present the first-ever fully integrated mm3 low-power biomedical transceiver with 1 meter of range that is powered by a mm2 thin-film battery. The transceiver is targeted for biomedical implants where size and energy constraints dictated by application make design challenging. Despite all the previous work in RFID tags, form factor of such radios is incompatible with mm3 biomedical implants. The proposed transceiver bridges this gap by providing a compact low-power solution that can run off small thin-film batteries and can be stacked with other system components in a 3D fashion. On the sensor-to-external side, we proposed a novel FSK architecture based on dual-resonator LC oscillators to mitigate unwanted overlap of two FSK tones’ phase noise spectrum. Due to inherent complexity of such systems, fourth order dual-resonator oscillators can exhibit instable operation. We mathematically modeled the instability and derive design conditions for stable oscillations. Through simulation and measurements, validity of derived models was confirmed. Together with other low-power system blocks, the transmitter was successfully implanted in live mouse and in-vivo measurements were performed to confirm successful transmission of vital signals through organic tissue. The integrated transmitter achieved a bit-error-rate of 10-6 at 10cm with 4.7nJ/bit energy consumption. On the external-to-sensor link, we proposed a new protocol to lower receiver peak power, which is highly limited due to small size of mm3 microsystem battery. In the proposed protocol, sending same data multiple times drastically relaxes jitter requirement on the sensor side at the cost of increased power consumption on the external side without increasing peak power radiated by the external unit. The receiver also uses a dual-coil LNA to improve range by 22% with only 11% area overhead. An asynchronous controller manages protocol timing and limits total monitoring current to 43nA. The fabricated receiver consumes 1.6nJ/bit at 40kbps while positioned 1m away from a 2W source.PhDElectrical EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/102458/1/ghaed_1.pd

    Broadband electric field sensing and its application to material characterisation and nuclear quadrupole resonance

    Get PDF
    The aim of this project is to address the challenges associated with extending the radio frequency capability of Electric Potential Sensors to greater than 10 MHz. This has culminated in a single broadband sensor, with a frequency range of 200 Hz to greater than 200 MHz. The use of Electric Potential Sensors for the measurement of electric field with minimal perturbation has already been demonstrated at Sussex. These high impedance sensors have been successfully employed in measuring signals with frequencies in the range 1 mHz to 2 MHz. Many different versions of these sensors have been produced to cater for specific measurement requirements in a wide variety of experimental situations. From the point of view of this project, the relevant prior work is the acquisition of a 2 MHz electric field nuclear magnetic resonance signal, and the non-destructive testing of composite materials at audio frequency. Two very distinct electric field measurement scenarios are described which illustrate the diverse capabilities of the broadband sensor. Firstly, an electric field readout system for nuclear quadrupole resonance is demonstrated for the first time, with a sodium chlorate sample at a frequency of 30 MHz. Nuclear quadrupole resonance is an important technique with applications in the detection of explosives and narcotics. Unlike nuclear magnetic resonance a large magnet is not required, opening up the possibility of portable equipment. The electric field readout system is shown to be simpler than the conventional magnetic readout and may therefore contribute to the development of portable devices. Secondly, a broadband, high spatial resolution microscope system for materials characterisation with four different imaging modes is described. This includes; the surface topography of a conducting sample; the dielectric constant variation in glass/epoxy composite; the conductivity variation in a carbon fibre composite; and the electrode pixels inside a solid state CMOS fingerprint sensor

    Design and analysis of a monolithic flexure atomic force microscope

    Get PDF
    Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Mechanical Engineering, 2008.Includes bibliographical references (p. 175-178).This thesis details the design, manufacture, and testing of a sub-nanometer accuracy atomic force microscope. It was made to be integrated into the Sub-Atomic Measuring Machine (SAMM) in collaboration with the University of North Carolina at Charlotte (UNCC). The microscope uses a tuning fork sensor to gauge its proximity to the sample surface. The sensor is fixed to a stage that is guided to move in one degree of freedom by a monolithic flexure. A piezoelectric actuator drives the moving stage while three capacitance sensors provide a non-contact direct measurement of the displacement. A decoupling flexure prohibits the error motions of the actuator from propagating into the moving stage. A digital control system uses closed loop control to regulate the vertical displacement of the stage. The positioning system demonstrated a 450 Hz -3db closed loop bandwidth and 0.249 RMS noise positioning. A new probe named after its inventor Dr. Terunobu Akiyama is implemented in a feedback control system that adjusts the displacement of the stage in order to maintain a constant gap between the probe and the sample. The system displayed an 8.3 nm RMS positioning noise when set to measure a stationary block of aluminum. The dynamics of the feedback control loop indicate that the system can operate at 27 Hz upon application of a proportional controller. Advanced methods to self excite the tuning fork sensor at resonance by use of a phase locked loop are explored. Follow-up work to integrate the atomic force microscope into the SAMM stage, diminish the electrical noise in the tuning fork, and to implement the phase locked loop circuit are suggested.by Dean Marko Ljubicic.S.M

    Design and fabrication of suspended-gate MOSFETs for MEMS resonator, switch and memory applications

    Get PDF
    Wireless communication systems and handset devices are showing a rapid growth in consumer and military applications. Applications using wireless communication standards such as personal connectivity devices (Bluetooth), mobile systems (GSM, UMTS, WCDMA) and wireless sensor network are the opportunities and challenges for the semi-conductor industry. The trend towards size and weight reduction, low power consumption and increased functionalities induces major technological issues. Today, the wireless circuit size is limited by the use of lots of external or "off-chip" components. Among them, quartz crystal, used as the time reference in any wireless systems, is the bottleneck of the miniaturization. Microelectromechanical systems (MEMS) is an emerging technology which has the capability of replacing the quartz. Based on similar technology than the Integrated Circuit (IC), MEMS are referred as electrostatically, thermally or piezoelectrically actuated mechanical structures. In this thesis, a new MEMS device based on the hybridization of a mechanical vibrating structure and a solid-sate MOS transistor has been developed. The Resonant Suspended-Gate MOSFET (RSG-MOSFET) device combines both advantages of a high mechanical quality factor and the transistor intrinsic gain. The physical mechanisms behind the actuation and the behavior of this device were deeply investigated and a quasi-static model was developed and validated, based on measured characteristics. Furthermore, the dynamic model of the RSG-MOSFET was created, taking into account the non-linear mechanical vibrations of the gate and the EKV model, used for MOSFET modeling. Two fabrication processes were successfully developed to demonstrate the proof of concept of such a device and to optimize the performances respectively. Aluminum-silicon (Al-Si1%) and pure silicon-based RSG-MOSFETs were successfully fabricated. DC and AC characterizations on both devices enabled to understand, extract and evaluate the mechanical and MOSFET effects. A specifically developed RF characterization methodology was used to measure the linear and non-linear behaviors of the resonator and to evaluate the influence of each polarization voltages on the signal response. RSG-MOSFET with resonant frequencies ranging from 5MHz to 90MHz and quality factor up to 1200 were measured. Since MEMS resonator quality factor is strongly degraded by air damping, a 0-level thin film vacuum packaging (10-7 mBar) process was developed, compatible with both AlSi-based and silicon-based RSG-MOSFET. The technology has the unique advantage of being done on already released structure and the room temperature process makes it suitable for above-IC integration. In parallel, a front-end compatible process was defined and major build blocks were developed in industrial environment at STMicroelectronics. This technology is based on the Silicon-On-Nothing technology, originally developed for advanced transistor, and therefore making the MEMS resonator process compatible with CMOS co-integration. DC characterizations of SG-MOSFET had shown interesting performances of this device for current switch and memory applications. Mechanical contact of the gate with the MOSFET channel induces a current switching slope greater than 0.8mV/decade, much better than the theoretical MOSFET limit of 60mV/decade. Maximum switch isolations of -37dB at 2 GHz and -27dB at 10GHz were measured on these devices. A novel MEMS-memory has been demonstrated, based on the direct charge injection to the storage media by the mechanical contact of the metal gate. Charge injection and retention mechanisms were investigated based on measured devices. Cycling study of up to 105 cycles were performed without noticing major degradations of the electrical behavior neither mechanical fatigue of the suspended gate. The measured retention time places this memory in between the DRAM and the FLASH memories. A scaling study has shown integration and compatibilities capabilities with existing CMOS

    A Fully Integrated CMOS Receiver.

    Full text link
    The rapidly growing wireless communication market is creating an increasing demand for low-cost highly-integrated radio frequency (RF) communication systems. This dissertation focuses on techniques to enable fully-integrated, wireless receivers incorporating all passive components, including the antenna, and also incorporating baseband synchronization on-chip. Not only is the receiver small in size and requires very low power, but it also delivers synchronized demodulated data. This research targets applications such as implantable neuroprosthetic devices and environmental wireless sensors, which need short range, low data-rate wireless communications but a long lifetime. To achieve these goals, the super-regenerative architecture is used, since power consumption with this architecture is low due to the simplified receiver architecture. This dissertation presents a 5GHz single chip receiver incorporating a compact on-chip 5 GHz slot antenna (50 times smaller than traditional dipole antennas) and a digital received data synchronization. A compact capacitively-loaded 5 GHz standing-wave resonator is used to improve the energy efficiency. An all-digital PLL timing scheme synchronizes the received data clock. A new type of low-power envelope detector is incorporated to increase the data rate and efficiency. The receiver achieves a data rate up to 1.2 Mb/s, dissipates 6.6 mW from a 1.5 V supply. The novel on-chip capacitively-loaded, transmission-line-standing-wave resonator is employed instead of a conventional low-Q on-chip inductor. The simulated quality factor of the resonator is very high (35), and is verified by phase-noise measurements of a prototype 5GHz Voltage Control Oscillator (VCO) incorporating this resonator. The prototype VCO, implemented in 0.13 µm CMOS, dissipates 3 mW from a 1.2 V supply, and achieves a measured phase noise of -117 dBc/Hz at a 1 MHz offset. In the on-chip antenna an efficient shielding technique is used to shield the antenna from the low-resistivity substrate underneath. Two standalone on-chip slot antenna prototypes were designed and fabricated in 0.13 µm CMOS. The 9 GHz prototype occupies a die area of only 0.3 mm2, has an active gain of -4.4 dBi and an efficiency of 9%. The second prototype occupies a die area of 0.47 mm2, and achieves a passive gain of approximately -17.0 dBi at 5 GHz.Ph.D.Electrical EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/60739/1/shid_1.pd

    Ambient RF energy harvesting and efficient DC-load inductive power transfer

    Get PDF
    This thesis analyses in detail the technology required for wireless power transfer via radio frequency (RF) ambient energy harvesting and an inductive power transfer system (IPT). Radio frequency harvesting circuits have been demonstrated for more than fifty years, but only a few have been able to harvest energy from freely available ambient (i.e. non-dedicated) RF sources. To explore the potential for ambient RF energy harvesting, a city-wide RF spectral survey was undertaken in London. Using the results from this survey, various harvesters were designed to cover four frequency bands from the largest RF contributors within the ultra-high frequency (0.3 to 3 GHz) part of the frequency spectrum. Prototypes were designed, fabricated and tested for each band and proved that approximately half of the London Underground stations were found to be suitable locations for harvesting ambient RF energy using the prototypes. Inductive Power Transfer systems for transmitting tens to hundreds of watts have been reported for almost a decade. Most of the work has concentrated on the optimization of the link efficiency and have not taken into account the efficiency of the driver and rectifier. Class-E amplifiers and rectifiers have been identified as ideal drivers for IPT applications, but their power handling capability at tens of MHz has been a crucial limiting factor, since the load and inductor characteristics are set by the requirements of the resonant inductive system. The frequency limitation of the driver restricts the unloaded Q-factor of the coils and thus the link efficiency. The system presented in this work alleviates the use of heavy and expensive field-shaping techniques by presenting an efficient IPT system capable of transmitting energy with high dc-to-load efficiencies at 6 MHz across a distance of 30 cm.Open Acces

    GigaHertz Symposium 2010

    Get PDF
    corecore