10,657 research outputs found

    Phase and Power Control in the RF Magnetron Power Stations of Superconducting Accelerators

    Full text link
    Phase and power control methods that satisfy the requirements of superconducting accelerators to magnetron RF sources were considered by a simplified kinetic model of a magnetron driven by a resonant injected signal. The model predicting and explaining stable, low noise operation of the tube below the threshold of self-excitation (the Hatrree voltage in free run mode) at a highest efficiency, a wide range of power control and a wide-band phase control was well verified in experiments demonstrating capabilities of the magnetron transmitters for powering of state of the art superconducting accelerators. Descriptions of the kinetic model, the experimental verification and a conceptual scheme of the highly-efficient magnetron RF transmitter for the accelerators are presented and discussed.Comment: 10 pages, 15 figure

    A Low Noise Sub-Sampling PLL in Which Divider Noise Is Eliminated and PD-CP Noise Is not multiplied by N^2

    Get PDF
    This paper presents a 2.2-GHz low jitter sub-sampling based PLL. It uses a phase-detector/charge-pump (PD/CP)that sub-samples the VCO output with the reference clock. In contrast to what happens in a classical PLL, the PD/CP noise is not multiplied by N2 in this sub-sampling PLL, resulting in a low noise contribution from the PD/CP. Moreover, no frequency divider is needed in the locked state and hence divider noise and power can be eliminated. An added frequency locked loop guarantees correct frequency locking without degenerating jitter performance when in lock. The PLL is implemented in a standard 0.18- m CMOS process. It consumes 4.2 mA from a 1.8 V supply and occupies an active area of 0.4 X 0.45 m

    Development of a strontium optical lattice clock for the SOC mission on the ISS

    Get PDF
    Ultra-precise optical clocks in space will allow new studies in fundamental physics and astronomy. Within an European Space Agency (ESA) program, the Space Optical Clocks (SOC) project aims to install and to operate an optical lattice clock on the International Space Station (ISS) towards the end of this decade. It would be a natural follow-on to the ACES mission, improving its performance by at least one order of magnitude. The payload is planned to include an optical lattice clock, as well as a frequency comb, a microwave link, and an optical link for comparisons of the ISS clock with ground clocks located in several countries and continents. Within the EU-FP7-SPACE-2010-1 project no. 263500, during the years 2011-2015 a compact, modular and robust strontium lattice optical clock demonstrator has been developed. Goal performance is a fractional frequency instability below 1x10^{-15}, tau^{-1/2} and a fractional inaccuracy below 5x10^{-17}. Here we describe the current status of the apparatus' development, including the laser subsystems. Robust preparation of cold {88}^Sr atoms in a second stage magneto-optical trap (MOT) is achieved.Comment: 27 Pages, 15 figures, Comptes Rendus Physique 201

    Optimum and suboptimum frequency demodulation

    Get PDF
    Optimum and suboptimum linear demodulators for telemetry communication syste
    • …
    corecore