3,826 research outputs found

    Weighted universal image compression

    Get PDF
    We describe a general coding strategy leading to a family of universal image compression systems designed to give good performance in applications where the statistics of the source to be compressed are not available at design time or vary over time or space. The basic approach considered uses a two-stage structure in which the single source code of traditional image compression systems is replaced with a family of codes designed to cover a large class of possible sources. To illustrate this approach, we consider the optimal design and use of two-stage codes containing collections of vector quantizers (weighted universal vector quantization), bit allocations for JPEG-style coding (weighted universal bit allocation), and transform codes (weighted universal transform coding). Further, we demonstrate the benefits to be gained from the inclusion of perceptual distortion measures and optimal parsing. The strategy yields two-stage codes that significantly outperform their single-stage predecessors. On a sequence of medical images, weighted universal vector quantization outperforms entropy coded vector quantization by over 9 dB. On the same data sequence, weighted universal bit allocation outperforms a JPEG-style code by over 2.5 dB. On a collection of mixed test and image data, weighted universal transform coding outperforms a single, data-optimized transform code (which gives performance almost identical to that of JPEG) by over 6 dB

    Optimal modeling for complex system design

    Get PDF
    The article begins with a brief introduction to the theory describing optimal data compression systems and their performance. A brief outline is then given of a representative algorithm that employs these lessons for optimal data compression system design. The implications of rate-distortion theory for practical data compression system design is then described, followed by a description of the tensions between theoretical optimality and system practicality and a discussion of common tools used in current algorithms to resolve these tensions. Next, the generalization of rate-distortion principles to the design of optimal collections of models is presented. The discussion focuses initially on data compression systems, but later widens to describe how rate-distortion theory principles generalize to model design for a wide variety of modeling applications. The article ends with a discussion of the performance benefits to be achieved using the multiple-model design algorithms

    Distributed Representation of Geometrically Correlated Images with Compressed Linear Measurements

    Get PDF
    This paper addresses the problem of distributed coding of images whose correlation is driven by the motion of objects or positioning of the vision sensors. It concentrates on the problem where images are encoded with compressed linear measurements. We propose a geometry-based correlation model in order to describe the common information in pairs of images. We assume that the constitutive components of natural images can be captured by visual features that undergo local transformations (e.g., translation) in different images. We first identify prominent visual features by computing a sparse approximation of a reference image with a dictionary of geometric basis functions. We then pose a regularized optimization problem to estimate the corresponding features in correlated images given by quantized linear measurements. The estimated features have to comply with the compressed information and to represent consistent transformation between images. The correlation model is given by the relative geometric transformations between corresponding features. We then propose an efficient joint decoding algorithm that estimates the compressed images such that they stay consistent with both the quantized measurements and the correlation model. Experimental results show that the proposed algorithm effectively estimates the correlation between images in multi-view datasets. In addition, the proposed algorithm provides effective decoding performance that compares advantageously to independent coding solutions as well as state-of-the-art distributed coding schemes based on disparity learning

    Sample-Parallel Execution of EBCOT in Fast Mode

    Get PDF
    JPEG 2000’s most computationally expensive building block is the Embedded Block Coder with Optimized Truncation (EBCOT). This paper evaluates how encoders targeting a parallel architecture such as a GPU can increase their throughput in use cases where very high data rates are used. The compression efficiency in the less significant bit-planes is then often poor and it is beneficial to enable the Selective Arithmetic Coding Bypass style (fast mode) in order to trade a small loss in compression efficiency for a reduction of the computational complexity. More importantly, this style exposes a more finely grained parallelism that can be exploited to execute the raw coding passes, including bit-stuffing, in a sample-parallel fashion. For a latency- or memory critical application that encodes one frame at a time, EBCOT’s tier-1 is sped up between 1.1x and 2.4x compared to an optimized GPU-based implementation. When a low GPU occupancy has already been addressed by encoding multiple frames in parallel, the throughput can still be improved by 5% for high-entropy images and 27% for low-entropy images. Best results are obtained when enabling the fast mode after the fourth significant bit-plane. For most of the test images the compression rate is within 1% of the original

    Improved Lossy Image Compression with Priming and Spatially Adaptive Bit Rates for Recurrent Networks

    Full text link
    We propose a method for lossy image compression based on recurrent, convolutional neural networks that outperforms BPG (4:2:0 ), WebP, JPEG2000, and JPEG as measured by MS-SSIM. We introduce three improvements over previous research that lead to this state-of-the-art result. First, we show that training with a pixel-wise loss weighted by SSIM increases reconstruction quality according to several metrics. Second, we modify the recurrent architecture to improve spatial diffusion, which allows the network to more effectively capture and propagate image information through the network's hidden state. Finally, in addition to lossless entropy coding, we use a spatially adaptive bit allocation algorithm to more efficiently use the limited number of bits to encode visually complex image regions. We evaluate our method on the Kodak and Tecnick image sets and compare against standard codecs as well recently published methods based on deep neural networks

    A Comprehensive Review of Distributed Coding Algorithms for Visual Sensor Network (VSN)

    Get PDF
    Since the invention of low cost camera, it has been widely incorporated into the sensor node in Wireless Sensor Network (WSN) to form the Visual Sensor Network (VSN). However, the use of camera is bringing with it a set of new challenges, because all the sensor nodes are powered by batteries. Hence, energy consumption is one of the most critical issues that have to be taken into consideration. In addition to this, the use of batteries has also limited the resources (memory, processor) that can be incorporated into the sensor node. The life time of a VSN decreases quickly as the image is transferred to the destination. One of the solutions to the aforementioned problem is to reduce the data to be transferred in the network by using image compression. In this paper, a comprehensive survey and analysis of distributed coding algorithms that can be used to encode images in VSN is provided. This also includes an overview of these algorithms, together with their advantages and deficiencies when implemented in VSN. These algorithms are then compared at the end to determine the algorithm that is more suitable for VSN
    • 

    corecore