336 research outputs found

    Dynamic Radio Cooperation for Downlink Cloud-RANs with Computing Resource Sharing

    Full text link
    A novel dynamic radio-cooperation strategy is proposed for Cloud Radio Access Networks (C-RANs) consisting of multiple Remote Radio Heads (RRHs) connected to a central Virtual Base Station (VBS) pool. In particular, the key capabilities of C-RANs in computing-resource sharing and real-time communication among the VBSs are leveraged to design a joint dynamic radio clustering and cooperative beamforming scheme that maximizes the downlink weighted sum-rate system utility (WSRSU). Due to the combinatorial nature of the radio clustering process and the non-convexity of the cooperative beamforming design, the underlying optimization problem is NP-hard, and is extremely difficult to solve for a large network. Our approach aims for a suboptimal solution by transforming the original problem into a Mixed-Integer Second-Order Cone Program (MI-SOCP), which can be solved efficiently using a proposed iterative algorithm. Numerical simulation results show that our low-complexity algorithm provides close-to-optimal performance in terms of WSRSU while significantly outperforming conventional radio clustering and beamforming schemes. Additionally, the results also demonstrate the significant improvement in computing-resource utilization of C-RANs over traditional RANs with distributed computing resources.Comment: 9 pages, 6 figures, accepted to IEEE MASS 201

    AirSync: Enabling Distributed Multiuser MIMO with Full Spatial Multiplexing

    Full text link
    The enormous success of advanced wireless devices is pushing the demand for higher wireless data rates. Denser spectrum reuse through the deployment of more access points per square mile has the potential to successfully meet the increasing demand for more bandwidth. In theory, the best approach to density increase is via distributed multiuser MIMO, where several access points are connected to a central server and operate as a large distributed multi-antenna access point, ensuring that all transmitted signal power serves the purpose of data transmission, rather than creating "interference." In practice, while enterprise networks offer a natural setup in which distributed MIMO might be possible, there are serious implementation difficulties, the primary one being the need to eliminate phase and timing offsets between the jointly coordinated access points. In this paper we propose AirSync, a novel scheme which provides not only time but also phase synchronization, thus enabling distributed MIMO with full spatial multiplexing gains. AirSync locks the phase of all access points using a common reference broadcasted over the air in conjunction with a Kalman filter which closely tracks the phase drift. We have implemented AirSync as a digital circuit in the FPGA of the WARP radio platform. Our experimental testbed, comprised of two access points and two clients, shows that AirSync is able to achieve phase synchronization within a few degrees, and allows the system to nearly achieve the theoretical optimal multiplexing gain. We also discuss MAC and higher layer aspects of a practical deployment. To the best of our knowledge, AirSync offers the first ever realization of the full multiuser MIMO gain, namely the ability to increase the number of wireless clients linearly with the number of jointly coordinated access points, without reducing the per client rate.Comment: Submitted to Transactions on Networkin
    • …
    corecore