11 research outputs found

    Adaptive Address Family Selection for Latency-Sensitive Applications on Dual-stack Hosts

    Full text link
    Latency is becoming a key factor of performance for Internet applications and has triggered a number of changes in its protocols. Our work revisits the impact on latency of address family selection in dual-stack hosts. Through RIPE Atlas measurements, we analyse the address families latency difference and establish two requirements based on our findings for a latency-focused selection mechanism. First, the address family should be chosen per destination. Second, the choice should be able to evolve over time dynamically. We propose and implement a solution formulated as an online learning problem balancing exploration and exploitation. We validate our solution in simulations based on RIPE Atlas measurements, implement and evaluate our prototype in four access networks using Chrome and popular web services. We demonstrate the ability of our solution to converge towards the lowest-latency address family and improve the latency of transport connections used by applications

    Reducing User Perceived Latency in Smart Phones Exploiting IP Network Diversity

    Get PDF
    The Fifth Generation (5G) wireless networks set its standard to provide very high data rates, Ultra-Reliable Low Latency Communications (URLLC), and significantly improved Quality of Service (QoS). 5G networks and beyond will power up billions of connected devices as it expands wireless services to edge computing and the Internet of Things (IoT). The Internet protocol suite continues its evolution from IPv4 addresses to IPv6 addresses by increasing the adoption rate and prioritizing IPv6. Hence, Internet Service Providers (ISP's) are using the address transition method called dual-stack to prioritize the IPv6 while supporting the existing IPv4. But this causes more connectivity overhead in dual-stack as compared to the single-stack network due to its preference schema towards the IPv6. The dual-stack network increases the Domain Name System (DNS) resolution and Transmission Control Protocol (TCP) connection time that results in higher page loading time, thereby significantly impacting the user experience. Hence, we propose a novel connectivity mechanism, called NexGen Connectivity Optimizer (NexGenCO), which redesigns the DNS resolution and TCP connection phases to reduce the user-perceived latency in the dual-stack network for mobile devices. Our solution utilizes the IP network diversity to improve connectivity through concurrency and intelligent caching. NexGenCO is successfully implemented in Samsung flagship devices with Android Pie and further evaluated using both simulated and live-air networks. It significantly reduces connectivity overhead and improves page loading time up to 18%

    A Brave New World: Studies on the Deployment and Security of the Emerging IPv6 Internet.

    Full text link
    Recent IPv4 address exhaustion events are ushering in a new era of rapid transition to the next generation Internet protocol---IPv6. Via Internet-scale experiments and data analysis, this dissertation characterizes the adoption and security of the emerging IPv6 network. The work includes three studies, each the largest of its kind, examining various facets of the new network protocol's deployment, routing maturity, and security. The first study provides an analysis of ten years of IPv6 deployment data, including quantifying twelve metrics across ten global-scale datasets, and affording a holistic understanding of the state and recent progress of the IPv6 transition. Based on cross-dataset analysis of relative global adoption rates and across features of the protocol, we find evidence of a marked shift in the pace and nature of adoption in recent years and observe that higher-level metrics of adoption lag lower-level metrics. Next, a network telescope study covering the IPv6 address space of the majority of allocated networks provides insight into the early state of IPv6 routing. Our analyses suggest that routing of average IPv6 prefixes is less stable than that of IPv4. This instability is responsible for the majority of the captured misdirected IPv6 traffic. Observed dark (unallocated destination) IPv6 traffic shows substantial differences from the unwanted traffic seen in IPv4---in both character and scale. Finally, a third study examines the state of IPv6 network security policy. We tested a sample of 25 thousand routers and 520 thousand servers against sets of TCP and UDP ports commonly targeted by attackers. We found systemic discrepancies between intended security policy---as codified in IPv4---and deployed IPv6 policy. Such lapses in ensuring that the IPv6 network is properly managed and secured are leaving thousands of important devices more vulnerable to attack than before IPv6 was enabled. Taken together, findings from our three studies suggest that IPv6 has reached a level and pace of adoption, and shows patterns of use, that indicates serious production employment of the protocol on a broad scale. However, weaker IPv6 routing and security are evident, and these are leaving early dual-stack networks less robust than the IPv4 networks they augment.PhDComputer Science and EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/120689/1/jczyz_1.pd

    Characterizing the IoT ecosystem at scale

    Get PDF
    Internet of Things (IoT) devices are extremely popular with home, business, and industrial users. To provide their services, they typically rely on a backend server in- frastructure on the Internet, which collectively form the IoT Ecosystem. This ecosys- tem is rapidly growing and offers users an increasing number of services. It also has been a source and target of significant security and privacy risks. One notable exam- ple is the recent large-scale coordinated global attacks, like Mirai, which disrupted large service providers. Thus, characterizing this ecosystem yields insights that help end-users, network operators, policymakers, and researchers better understand it, obtain a detailed view, and keep track of its evolution. In addition, they can use these insights to inform their decision-making process for mitigating this ecosystem’s security and privacy risks. In this dissertation, we characterize the IoT ecosystem at scale by (i) detecting the IoT devices in the wild, (ii) conducting a case study to measure how deployed IoT devices can affect users’ privacy, and (iii) detecting and measuring the IoT backend infrastructure. To conduct our studies, we collaborated with a large European Internet Service Provider (ISP) and a major European Internet eXchange Point (IXP). They rou- tinely collect large volumes of passive, sampled data, e.g., NetFlow and IPFIX, for their operational purposes. These data sources help providers obtain insights about their networks, and we used them to characterize the IoT ecosystem at scale. We start with IoT devices and study how to track and trace their activity in the wild. We developed and evaluated a scalable methodology to accurately detect and monitor IoT devices with limited, sparsely sampled data in the ISP and IXP. Next, we conduct a case study to measure how a myriad of deployed devices can affect the privacy of ISP subscribers. Unfortunately, we found that the privacy of a substantial fraction of IPv6 end-users is at risk. We noticed that a single device at home that encodes its MAC address into the IPv6 address could be utilized as a tracking identifier for the entire end-user prefix—even if other devices use IPv6 privacy extensions. Our results showed that IoT devices contribute the most to this privacy leakage. Finally, we focus on the backend server infrastructure and propose a methodology to identify and locate IoT backend servers operated by cloud services and IoT vendors. We analyzed their IoT traffic patterns as observed in the ISP. Our analysis sheds light on their diverse operational and deployment strategies. The need for issuing a priori unknown network-wide queries against large volumes of network flow capture data, which we used in our studies, motivated us to develop Flowyager. It is a system built on top of existing traffic capture utilities, and it relies on flow summarization techniques to reduce (i) the storage and transfer cost of flow captures and (ii) query response time. We deployed a prototype of Flowyager at both the IXP and ISP.Internet-of-Things-Geräte (IoT) sind aus vielen Haushalten, Büroräumen und In- dustrieanlagen nicht mehr wegzudenken. Um ihre Dienste zu erbringen, nutzen IoT- Geräte typischerweise auf eine Backend-Server-Infrastruktur im Internet, welche als Gesamtheit das IoT-Ökosystem bildet. Dieses Ökosystem wächst rapide an und bie- tet den Nutzern immer mehr Dienste an. Das IoT-Ökosystem ist jedoch sowohl eine Quelle als auch ein Ziel von signifikanten Risiken für die Sicherheit und Privatsphäre. Ein bemerkenswertes Beispiel sind die jüngsten groß angelegten, koordinierten globa- len Angriffe wie Mirai, durch die große Diensteanbieter gestört haben. Deshalb ist es wichtig, dieses Ökosystem zu charakterisieren, eine ganzheitliche Sicht zu bekommen und die Entwicklung zu verfolgen, damit Forscher, Entscheidungsträger, Endnutzer und Netzwerkbetreibern Einblicke und ein besseres Verständnis erlangen. Außerdem können alle Teilnehmer des Ökosystems diese Erkenntnisse nutzen, um ihre Entschei- dungsprozesse zur Verhinderung von Sicherheits- und Privatsphärerisiken zu verbes- sern. In dieser Dissertation charakterisieren wir die Gesamtheit des IoT-Ökosystems indem wir (i) IoT-Geräte im Internet detektieren, (ii) eine Fallstudie zum Einfluss von benutzten IoT-Geräten auf die Privatsphäre von Nutzern durchführen und (iii) die IoT-Backend-Infrastruktur aufdecken und vermessen. Um unsere Studien durchzuführen, arbeiten wir mit einem großen europäischen Internet- Service-Provider (ISP) und einem großen europäischen Internet-Exchange-Point (IXP) zusammen. Diese sammeln routinemäßig für operative Zwecke große Mengen an pas- siven gesampelten Daten (z.B. als NetFlow oder IPFIX). Diese Datenquellen helfen Netzwerkbetreibern Einblicke in ihre Netzwerke zu erlangen und wir verwendeten sie, um das IoT-Ökosystem ganzheitlich zu charakterisieren. Wir beginnen unsere Analysen mit IoT-Geräten und untersuchen, wie diese im Inter- net aufgespürt und verfolgt werden können. Dazu entwickelten und evaluierten wir eine skalierbare Methodik, um IoT-Geräte mit Hilfe von eingeschränkten gesampelten Daten des ISPs und IXPs präzise erkennen und beobachten können. Als Nächstes führen wir eine Fallstudie durch, in der wir messen, wie eine Unzahl von eingesetzten Geräten die Privatsphäre von ISP-Nutzern beeinflussen kann. Lei- der fanden wir heraus, dass die Privatsphäre eines substantiellen Teils von IPv6- Endnutzern bedroht ist. Wir entdeckten, dass bereits ein einzelnes Gerät im Haus, welches seine MAC-Adresse in die IPv6-Adresse kodiert, als Tracking-Identifikator für das gesamte Endnutzer-Präfix missbraucht werden kann — auch wenn andere Geräte IPv6-Privacy-Extensions verwenden. Unsere Ergebnisse zeigten, dass IoT-Geräte den Großteil dieses Privatsphäre-Verlusts verursachen. Abschließend fokussieren wir uns auf die Backend-Server-Infrastruktur und wir schla- gen eine Methodik zur Identifizierung und Lokalisierung von IoT-Backend-Servern vor, welche von Cloud-Diensten und IoT-Herstellern betrieben wird. Wir analysier- ten Muster im IoT-Verkehr, der vom ISP beobachtet wird. Unsere Analyse gibt Auf- schluss über die unterschiedlichen Strategien, wie IoT-Backend-Server betrieben und eingesetzt werden. Die Notwendigkeit a-priori unbekannte netzwerkweite Anfragen an große Mengen von Netzwerk-Flow-Daten zu stellen, welche wir in in unseren Studien verwenden, moti- vierte uns zur Entwicklung von Flowyager. Dies ist ein auf bestehenden Netzwerkverkehrs- Tools aufbauendes System und es stützt sich auf die Zusammenfassung von Verkehrs- flüssen, um (i) die Kosten für Archivierung und Transfer von Flow-Daten und (ii) die Antwortzeit von Anfragen zu reduzieren. Wir setzten einen Prototypen von Flowyager sowohl im IXP als auch im ISP ein

    “Be a Pattern for the World”: The Development of a Dark Patterns Detection Tool to Prevent Online User Loss

    Get PDF
    Dark Patterns are designed to trick users into sharing more information or spending more money than they had intended to do, by configuring online interactions to confuse or add pressure to the users. They are highly varied in their form, and are therefore difficult to classify and detect. Therefore, this research is designed to develop a framework for the automated detection of potential instances of web-based dark patterns, and from there to develop a software tool that will provide a highly useful defensive tool that helps detect and highlight these patterns

    Minding the Gap: Computing Ethics and the Political Economy of Big Tech

    Get PDF
    In 1988 Michael Mahoney wrote that “[w]hat is truly revolutionary about the computer will become clear only when computing acquires a proper history, one that ties it to other technologies and thus uncovers the precedents that make its innovations significant” (Mahoney, 1988). Today, over thirty years after this quote was written, we are living right in the middle of the information age and computing technology is constantly transforming modern living in revolutionary ways and in such a high degree that is giving rise to many ethical considerations, dilemmas, and social disruption. To explore the myriad of issues associated with the ethical challenges of computers using the lens of political economy it is important to explore the history and development of computer technology

    Technical Debt is an Ethical Issue

    Get PDF
    We introduce the problem of technical debt, with particular focus on critical infrastructure, and put forward our view that this is a digital ethics issue. We propose that the software engineering process must adapt its current notion of technical debt – focusing on technical costs – to include the potential cost to society if the technical debt is not addressed, and the cost of analysing, modelling and understanding this ethical debt. Finally, we provide an overview of the development of educational material – based on a collection of technical debt case studies - in order to teach about technical debt and its ethical implication

    Measuring Behavior 2018 Conference Proceedings

    Get PDF
    These proceedings contain the papers presented at Measuring Behavior 2018, the 11th International Conference on Methods and Techniques in Behavioral Research. The conference was organised by Manchester Metropolitan University, in collaboration with Noldus Information Technology. The conference was held during June 5th – 8th, 2018 in Manchester, UK. Building on the format that has emerged from previous meetings, we hosted a fascinating program about a wide variety of methodological aspects of the behavioral sciences. We had scientific presentations scheduled into seven general oral sessions and fifteen symposia, which covered a topical spread from rodent to human behavior. We had fourteen demonstrations, in which academics and companies demonstrated their latest prototypes. The scientific program also contained three workshops, one tutorial and a number of scientific discussion sessions. We also had scientific tours of our facilities at Manchester Metropolitan Univeristy, and the nearby British Cycling Velodrome. We hope this proceedings caters for many of your interests and we look forward to seeing and hearing more of your contributions

    Proceedings of the ETHICOMP 2022: Effectiveness of ICT ethics - How do we help solve ethical problems in the field of ICT?

    Get PDF
    This Ethicomp is again organized in exceptional times. Two previous ones were forced to turn to online conferences because of Covid-pandemic but it was decided that this one would be the physical one or cancelled as the need for real encounters and discussion between people are essential part of doing philosophy. We need possibility to meet people face to face and even part of the presentation were held distance–because of insurmountable problems of arriving by some authors– we manage to have real, physical conference, even the number of participants was smaller than previous conferences.The need of Ethicomp is underlined by the way world nowadays is portrayed for us. The truthfulness and argumentation seem to be replaced by lies, strategic games, hate and disrespect of humanity in personal, societal and even global communication. EThicomp is many times referred as community and therefore it is important that we as community do protect what Ethicomp stands for. We need to seek for goodness and be able to give argumentation what that goodness is. This lead us towards Habermass communicative action and Discourse ethics which encourages open and respectful discourse between people (see eg.Habermass 1984;1987;1996). However, this does not mean that we need to accept everything and everybody. We need to defend truthfulness, equality and demand those from others too. There are situations when some people should be removed from discussions if they neglect the demand for discourse. Because by giving voice for claims that have no respect for argumentation, lacks the respect of human dignity or are not ready for mutual understanding (or at least aiming to see possibility for it) we cannot have meaningful communication. This is visible in communication of all levels today and it should not be accepted, but resisted. It is duty of us all.</p
    corecore