14 research outputs found

    Five Years at the Edge: Watching Internet from the ISP Network

    Get PDF
    The Internet and the way people use it are constantly changing. Knowing traffic is crucial for operating the network, understanding users' need, and ultimately improving applications. Here, we provide an in-depth longitudinal view of Internet traffic in the last 5 years (from 2013 to 2017). We take the point of the view of a national-wide ISP and analyze flow-level rich measurements to pinpoint and quantify trends. We evaluate the providers' costs in terms of traffic consumption by users and services. We show that an ordinary broadband subscriber nowadays downloads more than twice as much as they used to do 5 years ago. Bandwidth hungry video services drive this change, while social messaging applications boom (and vanish) at incredible pace. We study how protocols and service infrastructures evolve over time, highlighting unpredictable events that may hamper traffic management policies. In the rush to bring servers closer and closer to users, we witness the birth of the sub-millisecond Internet, with caches located directly at ISP edges. The picture we take shows a lively Internet that always evolves and suddenly changes

    Context-aware task scheduling in distributed computing systems

    Full text link
    These days, the popularity of technologies such as machine learning, augmented reality, and big data analytics is growing dramatically. This leads to a higher demand of computational power not only for IT professionals but also for ordinary device users who benefit from new applications. At the same time, the computational performance of end-user devices increases to meet the demands of these resource-hungry applications. As a result, there is a coexistence of a huge demand of computational power on the one side and a large pool of computational resources on the other side. Bringing these two sides together is the idea of computational resource sharing systems which allow applications to forward computationally intensive workload to remote resources. This technique is often used in cloud computing where customers can rent computational power. However, we argue that not only cloud resources can be used as offloading targets. Rather, idle CPU cycles from end-user administered devices at the edge of the network can be spontaneously leveraged as well. Edge devices, however, are not only heterogeneous in their hardware and software capabilities, they also do not provide any guarantees in terms of reliability or performance. Does it mean that either the applications that require further guarantees or the unpredictable resources need to be excluded from such a sharing system? In this thesis, we propose a solution to this problem by introducing the Tasklet system, our approach for a computational resource sharing system. The Tasklet system supports computation offloading to arbitrary types of devices, including stable cloud instances as well as unpredictable end-user owned edge resources. Therefore, the Tasklet system is structured into multiple layers. The lowest layer is a best-effort resource sharing system which provides lightweight task scheduling and execution. Here, best-effort means that in case of a failure, the task execution is dropped and that tasks are allocated to resources randomly. To provide execution guarantees such as a reliable or timely execution, we add a Quality of Computation (QoC) layer on top of the best-effort execution layer. The QoC layer enforces the guarantees for applications by using a context-aware task scheduler which monitors the available resources in the computing environment and performs the matchmaking between resources and tasks based on the current state of the system. As edge resources are controlled by individuals, we consider the fact that these users need to be able to decide with whom they want to share their resources and for which price. Thus, we add a social layer on top of the system that allows users to establish friendship connections which can then be leveraged for social-aware task allocation and accounting of shared computation

    Big Data for Traffic Monitoring and Management

    Get PDF
    The last two decades witnessed tremendous advances in the Information and Com- munications Technologies. Beside improvements in computational power and storage capacity, communication networks carry nowadays an amount of data which was not envisaged only few years ago. Together with their pervasiveness, network complexity increased at the same pace, leaving operators and researchers with few instruments to understand what happens in the networks, and, on the global scale, on the Internet. Fortunately, recent advances in data science and machine learning come to the res- cue of network analysts, and allow analyses with a level of complexity and spatial/tem- poral scope not possible only 10 years ago. In my thesis, I take the perspective of an In- ternet Service Provider (ISP), and illustrate challenges and possibilities of analyzing the traffic coming from modern operational networks. I make use of big data and machine learning algorithms, and apply them to datasets coming from passive measurements of ISP and University Campus networks. The marriage between data science and network measurements is complicated by the complexity of machine learning algorithms, and by the intrinsic multi-dimensionality and variability of this kind of data. As such, my work proposes and evaluates novel techniques, inspired from popular machine learning approaches, but carefully tailored to operate with network traffic. In this thesis, I first provide a thorough characterization of the Internet traffic from 2013 to 2018. I show the most important trends in the composition of traffic and users’ habits across the last 5 years, and describe how the network infrastructure of Internet big players changed in order to support faster and larger traffic. Then, I show the chal- lenges in classifying network traffic, with particular attention to encryption and to the convergence of Internet around few big players. To overcome the limitations of classical approaches, I propose novel algorithms for traffic classification and management lever- aging machine learning techniques, and, in particular, big data approaches. Exploiting temporal correlation among network events, and benefiting from large datasets of op- erational traffic, my algorithms learn common traffic patterns of web services, and use them for (i) traffic classification and (ii) fine-grained traffic management. My proposals are always validated in experimental environments, and, then, deployed in real opera- tional networks, from which I report the most interesting findings I obtain. I also focus on the Quality of Experience (QoE) of web users, as their satisfaction represents the final objective of computer networks. Again, I show that using big data approaches, the network can achieve visibility on the quality of web browsing of users. In general, the algorithms I propose help ISPs have a detailed view of traffic that flows in their network, allowing fine-grained traffic classification and management, and real-time monitoring of users QoE

    Measuring knowledge sharing processes through social network analysis within construction organisations

    Get PDF
    The construction industry is a knowledge intensive and information dependent industry. Organisations risk losing valuable knowledge, when the employees leave them. Therefore, construction organisations need to nurture opportunities to disseminate knowledge through strengthening knowledge-sharing networks. This study aimed at evaluating the formal and informal knowledge sharing methods in social networks within Australian construction organisations and identifying how knowledge sharing could be improved. Data were collected from two estimating teams in two case studies. The collected data through semi-structured interviews were analysed using UCINET, a Social Network Analysis (SNA) tool, and SNA measures. The findings revealed that one case study consisted of influencers, while the other demonstrated an optimal knowledge sharing structure in both formal and informal knowledge sharing methods. Social networks could vary based on the organisation as well as the individuals’ behaviour. Identifying networks with specific issues and taking steps to strengthen networks will enable to achieve optimum knowledge sharing processes. This research offers knowledge sharing good practices for construction organisations to optimise their knowledge sharing processes
    corecore