8,241 research outputs found

    Packet transport on scale free networks

    Get PDF
    We introduce a model of information packet transport on networks in which the packets are posted by a given rate and move in parallel according to a local search algorithm. By performing a number of simulations we investigate the major kinetic properties of the transport as a function of the network geometry, the packet input rate and the buffer size. We find long-range correlations in the power spectra of arriving packet density and the network's activity bursts. The packet transit time distribution shows a power-law dependence with average transit time increasing with network size. This implies dynamic queueing on the network, in which many interacting queues are mutually driven by temporally correlated packet stream

    Information Super-Diffusion on Structured Networks

    Full text link
    We study diffusion of information packets on several classes of structured networks. Packets diffuse from a randomly chosen node to a specified destination in the network. As local transport rules we consider random diffusion and an improved local search method. Numerical simulations are performed in the regime of stationary workloads away from the jamming transition. We find that graph topology determines the properties of diffusion in a universal way, which is reflected by power-laws in the transit-time and velocity distributions of packets. With the use of multifractal scaling analysis and arguments of non-extensive statistics we find that these power-laws are compatible with super-diffusive traffic for random diffusion and for improved local search. We are able to quantify the role of network topology on overall transport efficiency. Further, we demonstrate the implications of improved transport rules and discuss the importance of matching (global) topology with (local) transport rules for the optimal function of networks. The presented model should be applicable to a wide range of phenomena ranging from Internet traffic to protein transport along the cytoskeleton in biological cells.Comment: 27 pages 7 figure

    The on-off network traffic model under intermediate scaling

    Full text link
    The result provided in this paper helps complete a unified picture of the scaling behavior in heavy-tailed stochastic models for transmission of packet traffic on high-speed communication links. Popular models include infinite source Poisson models, models based on aggregated renewal sequences, and models built from aggregated on-off sources. The versions of these models with finite variance transmission rate share the following pattern: if the sources connect at a fast rate over time the cumulative statistical fluctuations are fractional Brownian motion, if the connection rate is slow the traffic fluctuations are described by a stable L\'evy process, while the limiting fluctuations for the intermediate scaling regime are given by fractional Poisson motion.Comment: 14

    Design and evaluation of a connection management mechanism for an ATM-based connectionless service

    Get PDF
    The Asynchronous Transfer Mode (ATM) has been developed as a connection-oriented technique for the transfer of fixed-size cells over high-speed networks. Many applications, however, require a connectionless network service. In order to provide such a technique, one can built a connectionless service on top of the connection-oriented service. In doing so, the issue of connection management comes into play. In this paper we propose a new connection management mechanism that provides for low bandwidth usage (as compared to a permanent connection) and low delays (as compared to a connection-per-packet approach). We model the new mechanism under two workload scenarios: an ordinary Poisson process and an interrupted Poisson process. We use Markovian techniques as well as matrix-geometric methods to evaluate the new connection management mechanism. From the evaluations it turns out that the proposed mechanism is superior to older approaches (which can be seen as limiting cases)

    Self-generated Self-similar Traffic

    Get PDF
    Self-similarity in the network traffic has been studied from several aspects: both at the user side and at the network side there are many sources of the long range dependence. Recently some dynamical origins are also identified: the TCP adaptive congestion avoidance algorithm itself can produce chaotic and long range dependent throughput behavior, if the loss rate is very high. In this paper we show that there is a close connection between the static and dynamic origins of self-similarity: parallel TCPs can generate the self-similarity themselves, they can introduce heavily fluctuations into the background traffic and produce high effective loss rate causing a long range dependent TCP flow, however, the dropped packet ratio is low.Comment: 8 pages, 12 Postscript figures, accepted in Nonlinear Phenomena in Complex System

    High-speed, in-band performance measurement instrumentation for next generation IP networks

    Get PDF
    Facilitating always-on instrumentation of Internet traffic for the purposes of performance measurement is crucial in order to enable accountability of resource usage and automated network control, management and optimisation. This has proven infeasible to date due to the lack of native measurement mechanisms that can form an integral part of the network‟s main forwarding operation. However, Internet Protocol version 6 (IPv6) specification enables the efficient encoding and processing of optional per-packet information as a native part of the network layer, and this constitutes a strong reason for IPv6 to be adopted as the ubiquitous next generation Internet transport. In this paper we present a very high-speed hardware implementation of in-line measurement, a truly native traffic instrumentation mechanism for the next generation Internet, which facilitates performance measurement of the actual data-carrying traffic at small timescales between two points in the network. This system is designed to operate as part of the routers' fast path and to incur an absolutely minimal impact on the network operation even while instrumenting traffic between the edges of very high capacity links. Our results show that the implementation can be easily accommodated by current FPGA technology, and real Internet traffic traces verify that the overhead incurred by instrumenting every packet over a 10 Gb/s operational backbone link carrying a typical workload is indeed negligible
    • 

    corecore