2,021 research outputs found

    New Approach for Temporal Stability Evaluation of Pseudo-Invariant Calibration Sites (PICS)

    Get PDF
    Pseudo-Invariant Calibration Sites (PICS) are one of the most popular methods for in-flight vicarious radiometric calibration of Earth remote sensing satellites. The fundamental question of PICS temporal stability has not been adequately addressed. However, the main purpose of this work is to evaluate the temporal stability of a few PICS using a new approach. The analysis was performed over six PICS (Libya 1, Libya 4, Niger 1, Niger 2, Egypt 1 and Sudan 1). The concept of a Virtual Constellation was developed to provide greater temporal coverage and also to overcome the dependence limitation of any specific characteristic derived from one particular sensor. TOA reflectance data from four sensors consistently demonstrating stable calibration to within 5%the Landsat 7 ETM+ (Enhanced Thematic Mapper Plus), Landsat 8 OLI (Operational Land Imager), Terra MODIS (Moderate Resolution Imaging Spectroradiometer) and Sentinel-2A MSI (Multispectral Instrument)were merged into a seamless dataset. Instead of using the traditional method of trend analysis (Students T test), a nonparametric Seasonal Mann-Kendall test was used for determining the PICS stability. The analysis results indicate that Libya 4 and Egypt 1 do not exhibit any monotonic trend in six reflective solar bands common to all of the studied sensors, indicating temporal stability. A decreasing monotonic trend was statistically detected in all bands, except SWIR 2, for Sudan 1 and the Green and Red bands for Niger 1. An increasing trend was detected in the Blue band for Niger 2 and the NIR band for Libya 1. These results do not suggest abandoning PICS as a viable calibration source. Rather, they indicate that PICS temporal stability cannot be assumed and should be regularly monitored as part of the sensor calibration process

    Historical forest biomass dynamics modelled with Landsat spectral trajectories

    Get PDF
    Acknowledgements National Forest Inventory data are available online, provided by Ministerio de Agricultura, Alimentación y Medio Ambiente (España). Landsat images are available online, provided by the USGS.Peer reviewedPostprin

    Automatic Radiometric Normalization of Multitemporal Satellite Imagery

    Get PDF
    The linear scale invariance of the multivariate alteration detection (MAD) transformation is used to obtain invariant pixels for automatic relative radiometric normalization of time series of multispectral data. Normalization by means of ordinary least squares regression method is compared with normalization using orthogonal regression. The procedure is applied to Landsat TM images over Nevada, Landsat ETM+ images over Morocco, and SPOT HRV images over Kenya. Results from this new automatic, combined MAD/orthogonal regression method, based on statistical analysis of test pixels not used in the actual normalization, compare favorably with results from normalization from manually obtained time-invariant features. (C) 2004 Elsevier Inc. All rights reserved

    The Impact of Sensor Characteristics and Data Availability on Remote Sensing Based Change Detection

    Get PDF
    Land cover and land use change are among the major drivers of global change. In a time of mounting challenges for sustainable living on our planet any research benefits from interdisciplinary collaborations to gain an improved understanding of the human-environment system and to develop suitable and improve existing measures of natural resource management. This includes comprehensive understanding of land cover and land use changes, which is fundamental to mitigate global change. Remote sensing technology is essential for the analyses of the land surface (and hence related changes) because it offers cost-effective ways of collecting data simultaneously over large areas. With increasing variety of sensors and better data availability, the application of remote sensing as a means to assist in modeling, to support monitoring, and to detect changes at various spatial and temporal scales becomes more and more feasible. The relationship between the nature of the changes on the land surface, the sensor properties, and the conditions at the time of acquisition influences the potential and quality of land cover and land use change detection. Despite the wealth of existing change detection research, there is a need for new methodologies in order to efficiently explore the huge amount of data acquired by remote sensing systems with different sensor characteristics. The research of this thesis provides solutions to two main challenges of remote sensing based change detection. First, geometric effects and distortions occur when using data taken under different sun-target-sensor geometries. These effects mainly occur if sun position and/or viewing angles differ between images. This challenge was met by developing a theoretical framework of bi-temporal change detection scenarios. The concept includes the quantification of distortions that can occur in unfavorable situations. The invention and application of a new method – the Robust Change Vector Analysis (RCVA) – reduced the detection of false changes due to these distortions. The quality and robustness of the RCVA were demonstrated in an example of bi-temporal cross-sensor change detection in an urban environment in Cologne, Germany. Comparison with a state-of-the-art method showed better performance of RCVA and robustness against thresholding. Second, this thesis provides new insights into how to optimize the use of dense time series for forest cover change detection. A collection of spectral indices was reviewed for their suitability to display forest structure, development, and condition at a study site on Vancouver Island, British Columbia, Canada. The spatio-temporal variability of the indices was analyzed to identify those indices, which are considered most suitable for forest monitoring based on dense time series. Amongst the indices, the Disturbance Index (DI) was found to be sensitive to the state of the forest (i.e., forest structure). The Normalized Difference Moisture Index (NDMI) was found to be spatio-temporally stable and to be the most sensitive index for changes in forest condition. Both indices were successfully applied to detect abrupt forest cover changes. Further, this thesis demonstrated that relative radiometric normalization can obscure actual seasonal variation and long-term trends of spectral signals and is therefore not recommended to be incorporated in the time series pre-processing of remotely-sensed data. The main outcome of this part of the presented research is a new method for detecting discontinuities in time series of spectral indices. The method takes advantage of all available information in terms of cloud-free pixels and hence increases the number of observations compared to most existing methods. Also, the first derivative of the time series was identified (together with the discontinuity measure) as a suitable variable to display and quantify the dynamic of dense Landsat time series that cannot be observed with less dense time series. Given that these discontinuities are predominantly related to abrupt changes, the presented method was successfully applied to clearcut harvest detection. The presented method detected major events of forest change at unprecedented temporal resolution and with high accuracy (93% overall accuracy). This thesis contributes to improved understanding of bi-temporal change detection, addressing image artifacts that result from flexible acquisition features of modern satellites (e.g., off-nadir capabilities). The demonstrated ability to efficiently analyze cross-sensor data and data taken under unfavorable conditions is increasingly important for the detection of many rapid changes, e.g., to assist in emergency response. This thesis further contributes to the optimized use of remotely sensed time series for improving the understanding, accuracy, and reliability of forest cover change detection. Additionally, the thesis demonstrates the usability of and also the necessity for continuity in medium spatial resolution satellite imagery, such as the Landsat data, for forest management. Constellations of recently launched (e.g., Landsat 8 OLI) and upcoming sensors (e.g., Sentinel-2) will deliver new opportunities to apply and extend the presented methodologies.Der Einfluss von Sensorcharakteristik und Datenverfügbarkeit auf die fernerkundungsbasierte Veränderungsdetektion Landbedeckungs- und Landnutzungswandel gehören zu den Haupttriebkräften des Globalen Wandels. In einer Zeit, in der ein nachhaltiges Leben auf unserem Planeten zu einer wachsenden Herausforderung wird, profitiert die Wissenschaft von interdisziplinärer Zusammenarbeit, um ein besseres Verständnis der Mensch-Umwelt-Beziehungen zu erlangen und um verbesserte Maßnahmen des Ressourcenmanagements zu entwickeln. Dazu gehört auch ein erweitertes Verständnis von Landbedeckungs- und Landnutzungswandel, das elementar ist, um dem Globalen Wandel zu begegnen. Die Fernerkundungstechnologie ist grundlegend für die Analyse der Landoberfläche und damit verknüpften Veränderungen, weil sie in der Lage ist, große Flächen gleichzeitig zu erfassen. Mit zunehmender Sensorenvielfalt und besserer Datenverfügbarkeit gewinnt Fernerkundung bei der Modellierung, beim Monitoring sowie als Mittel zur Erkennung von Veränderungen in verschiedenen räumlichen und zeitlichen Skalen zunehmend an Bedeutung. Das Wirkungsgeflecht zwischen der Art von Veränderungen der Landoberfläche, Sensoreigenschaften und Aufnahmebedingungen beeinflusst das Potenzial und die Qualität fernerkundungsbasierter Landbedeckungs- und Landnutzungsveränderungs-detektion. Trotz der Fülle an bestehenden Forschungsleistungen zur Veränderungsdetektion besteht ein dringender Bedarf an neuen Methoden, die geeignet sind, das große Aufkommen von Daten unterschiedlicher Sensoren effizient zu nutzen. Die in dieser Abschlussarbeit durchgeführte Forschung befasst sich mit zwei aktuellen Problemfeldern der fernerkundungsbasierten Veränderungsdetektion. Das erste sind die geometrischen Effekte und Verzerrungen, die auftreten, wenn Daten genutzt werden, die unter verschiedenen Sonne-Zielobjekt-Sensor-Geometrien aufgenommen wurden. Diese Effekte treten vor allem dann auf, wenn unterschiedliche Sonnenstände und/oder unterschiedliche Einfallswinkel der Satelliten genutzt werden. Der Herausforderung wurde begegnet, indem ein theoretisches Konzept von Szenarien dargelegt wurde, die bei der bi-temporalen Veränderungsdetektion auftreten können. Das Konzept beinhaltet die Quantifizierung der Verzerrungen, die in ungünstigen Fällen auftreten können. Um die Falscherkennung von Veränderungen in Folge der resultierenden Verzerrungen zu reduzieren, wurde eine neue Methode entwickelt – die Robust Change Vector Analysis (RCVA). Die Qualität der Methode wird an einem Beispiel der Veränderungsdetektion im urbanen Raum (Köln, Deutschland) aufgezeigt. Ein Vergleich mit einer anderen gängigen Methode zeigt bessere Ergebnisse für die neue RCVA und untermauert deren Robustheit gegenüber der Schwellenwertbestimmung. Die zweite Herausforderung, mit der sich die vorliegende Arbeit befasst, betrifft die optimierte Nutzung von dichten Zeitreihen zur Veränderungsdetektion von Wäldern. Eine Auswahl spektraler Indizes wurde hinsichtlich ihrer Tauglichkeit zur Erfassung von Waldstruktur, Waldentwicklung und Waldzustand in einem Untersuchungsgebiet auf Vancouver Island, British Columbia, Kanada, bewertet. Um die Einsatzmöglichkeiten der Indizes für dichte Zeitreihen bewerten zu können, wurde ihre raum-zeitliche Variabilität untersucht. Der Disturbance Index (DI) ist ein Index, der sensitiv für das Stadium eines Waldes ist (d. h. seine Struktur). DerNormalized Difference Moisture Index (NDMI) ist raum-zeitlich stabil und zudem am sensitivsten für Veränderungen des Waldzustands. Beide Indizes wurden erfolgreich zur Erkennung von abrupten Veränderungen getestet. In der vorliegenden Arbeit wird aufgezeigt, dass die relative radiometrische Normierung saisonale Variabilität und Langzeittrends von Zeitreihen spektraler Signale verzerrt. Die relative radiometrische Normierung wird daher nicht zur Vorprozessierung von Fernerkundungszeitreihen empfohlen. Das wichtigste Ergebnis dieser Studie ist eine neue Methode zur Erkennung von Diskontinuitäten in Zeitreihen spektraler Indizes. Die Methode nutzt alle wolkenfreien, ungestörten Beobachtungen (d. h. unabhängig von der Gesamtbewölkung in einem Bild) in einer Zeitreihe und erhöht dadurch die Anzahl an Beobachtungen im Vergleich zu anderen Methoden. Die erste Ableitung und die Messgröße zur Erfassung der Diskontinuitäten sind gut geeignet, um die Dynamik dichter Zeitreihen zu beschreiben und zu quantifizieren. Dies ist mit weniger dichten Zeitreihen nicht möglich. Da diese Diskontinuitäten im Untersuchungsgebiet üblicherweise abrupter Natur sind, ist die Methode gut geeignet, um Kahlschläge zu erfassen. Die hier dargelegte neue Methode detektiert Waldbedeckungsveränderungen mit einzigartiger zeitlicher Auflösung und hoher Genauigkeit (93% Gesamtgenauigkeit). Die vorliegende Arbeit trägt zu einem verbesserten Verständnis bi-temporaler Veränderungsdetektion bei, indem Bildartefakte berücksichtigt werden, die infolge der Flexibilität moderner Sensoren entstehen können. Die dargestellte Möglichkeit, Daten zu analysieren, die von unterschiedlichen Sensoren stammen und die unter ungünstigen Bedingungen aufgenommen wurden, wird zukünftig bei der Erfassung von schnellen Veränderungen an Bedeutung gewinnen, z. B. bei Katastropheneinsätzen. Ein weiterer Beitrag der vorliegenden Arbeit liegt in der optimierten Anwendung von Fernerkundungszeitreihen zur Verbesserung von Verständnis, Genauigkeit und Verlässlichkeit der Waldveränderungsdetektion. Des Weiteren zeigt die Arbeit den Nutzen und die Notwendigkeit der Fortführung von Satellitendaten mit mittlerer Auflösung (z. B. Landsat) für das Waldmanagement. Konstellationen kürzlich gestarteter (z. B. Landsat 8 OLI) und zukünftiger Sensoren (z. B. Sentinel-2) werden neue Möglichkeiten zur Anwendung und Optimierung der hier vorgestellten Methoden bieten

    Detection of Change Points in Pseudo-Invariant Calibration Sites Time Series Using Multi-Sensor Satellite Imagery

    Get PDF
    The remote sensing community has extensively used Pseudo-Invariant Calibration Sites (PICS) to monitor the long-term in-flight radiometric calibration of Earth-observing satellites. The use of the PICS has an underlying assumption that these sites are invariant over time. However, the site’s temporal stability has not been assured in the past. This work evaluates the temporal stability of PICS by not only detecting the trend but also locating significant shifts (change points) lying behind the time series. A single time series was formed using the virtual constellation approach in which multiple sensors data were combined for each site to achieve denser temporal coverage and overcome the limitation of dependence related to a specific sensor. The sensors used for this work were selected based on radiometric calibration uncertainty and availability of the data: operational land imager (Landsat-8), enhanced thematic mapper (Landsat-7), moderate resolution imaging spectroradiometer (Terra and Aqua), and multispectral instrument (Sentinel-2A). An inverse variance weighting method was applied to the Top-of- Atmosphere (TOA) reflectance time series to reveal the underlying trend. The sequential Mann–Kendall test was employed upon the weighted TOA reflectance time-series recorded over 20 years to detect abrupt changes for six reflective bands. Statistically significant trends and abrupt changes have been detected for all sites, but the magnitude of the trends (maximum of 0.215% change in TOA reflectance per year) suggest that these sites are not changing substantially over time. Hence, it can be stated that despite minor changes in all evaluated PICS, they can be used for radiometric calibration of optical remote sensing sensors. The new approach provides useful results by revealing underlying trends and providing a better understanding of PICS\u27 stability

    Normalization of Pseudo-invariant Calibration Sites for Increasing the Temporal Resolution and Long-Term Trending

    Get PDF
    Given their low level of temporal, spatial, and spectral variability, Pseudo-Invariant Calibration Sites (PICS) have been increasingly desired as data sources for radiometric calibration of Earth imaging satellite sensors. The temporal resolution for PICS data acquired by any sensor is limited by the amount of time required for it to make subsequent passes over the site. Consequently, for any given PICS, it can take many years of imaging to develop a sufficient amount of cloud-free data to perform radiometric calibration; this can be especially problematic for sensors in their early years after launch. This thesis presents techniques to combine Landsat-8; normally acquiring data for every 16 days, image data from multiple PICS into a single dataset with increased temporal resolution and is called “PICS Normalization Process” or PNP. Landsat-8 Operational Land Imager (OLI) data from six Saharan desert sites were normalized to the Libya-4 reference. The normalized data were then merged into a “Super PICS” dataset, and the estimation of calibration drift was derived. The results of the Super PICS dataset show that the temporal resolution of the calibration dataset can be increased by approximately a factor of three to four times. The normalization process was performed on radiometrically and geometrically corrected image data (“L1T” product), and also on the same image data corrected for BRDF effects using a quadratic function of the solar zenith angle and TOA reflectance over a region of interest. An additional uncertainty analysis was performed using the BRDF corrected image data based on the following parameters which are involved in this whole BRDF PICS Normalization Process: Worst-case histogram bin analysis, Temporal Uncertainty of each PICS, BRDF Super PICS uncertainty. The resulting uncertainties are within the currently accepted satellite calibration range, within 3% for all spectral bands. Overall, the process indicates a calibration drift for OLI within 0.15% per year, agreeing quite well with the calibration drift derived from the on-board calibrators

    Validation of Expanded Trend-To-Trend Cross-Calibration Technique and its Application to Global Scale

    Get PDF
    The expanded Trend-to-Trend (T2T) cross-calibration technique has the potential to calibrate two sensors in much less time and provides trends on daily assessment basis. The trend obtained from the expanded technique aids in evaluating the differences between satellite sensors. Therefore, this technique was validated with several trusted cross-calibration techniques to evaluate its accuracy. Initially, the expanded T2T technique was validated with three independent RadcaTS RRV, DIMITRI-PICS, and APICS models, and results show a 1% average difference with other models over all bands. Further, this technique was validated with other SDSU techniques to calibrate the newly launched satellite Landsat 9 with 8, demonstrating good agreement in all bands within 0.5%. This technique was also validated for Terra MODIS and ETM+, showing consistency within 1% for all bands compared to four PICS sites. Additionally, the T2T technique was applied to a global scale using EPICS Global sites. The expanded T2T cross-calibration gain result obtained for Landsat 8 versus Landsat 7/9, Sentinel 2A/2B, and Terra/Aqua MODIS presented that the difference between these pairs was within 0.5- 1% for most of the spectral bands. Total uncertainty obtained for these pairs of sensors using Monte Carlo Simulation varies from 2.5-4% for all bands except for SWIR2 bands, which vary up to 5%. The difference between EPICS Global and EPICS North Africa was calculated using the ratio of trend gain; the difference among them was within 0.5-1% difference on average for all the sensors and bands within a 0.5% uncertainty level difference

    Mapping lichen changes in the summer range of the George River Caribou Herd (Québec-Labrador, Canada) using Landsat imagery (1976-1998)

    Get PDF
    Habitat studies are essential in order to understand the dynamics of migratory caribou herds and to better define management strategies. In this paper, multi-date Landsat images are used to map lichen in the summer range of the George River Caribou Herd (GRCH), Québec-Labrador (Canada), over the period from 1976 to 1998. Multi-Spectral Scanner scenes from the seventies and Thematic Mapper scenes from the eighties and nineties were radiometrically normalized and processed using spectral mixture analysis to produce lichen fraction maps and lichen change maps. Field sites, surveyed during summer campaigns in 2000 and 2001, are used to validate the lichen maps. Results show a good agreement between field data and the lichen results obtained from image analysis. Maps are then interpreted in the context of previous caribou dynamics and habitat studies conducted in the study area over the last three decades. The remote-sensing results confirm the habitat degradation and herd distribution patterns described by other investigators. The period between 1976-1979 and 1985-1986 is characterized by a localized decrease in lichen cover in the southern part of the study area, whereas from 1985-1986 to 1998 the decrease in lichen cover extends northward and westward. This period coincides with the widest extent of the GRCH summer range and activity. The approach presented in this paper provides a valuable means for better understanding the spatio-temporal relation between herd dynamics and distribution, as well as habitat use. Satellite remote sensing imagery is a useful data source, providing timely information over vast and remote territories where caribou populations cannot be surveyed and managed on a frequent basis.&nbsp
    corecore