68,623 research outputs found

    DeepStory: Video Story QA by Deep Embedded Memory Networks

    Full text link
    Question-answering (QA) on video contents is a significant challenge for achieving human-level intelligence as it involves both vision and language in real-world settings. Here we demonstrate the possibility of an AI agent performing video story QA by learning from a large amount of cartoon videos. We develop a video-story learning model, i.e. Deep Embedded Memory Networks (DEMN), to reconstruct stories from a joint scene-dialogue video stream using a latent embedding space of observed data. The video stories are stored in a long-term memory component. For a given question, an LSTM-based attention model uses the long-term memory to recall the best question-story-answer triplet by focusing on specific words containing key information. We trained the DEMN on a novel QA dataset of children's cartoon video series, Pororo. The dataset contains 16,066 scene-dialogue pairs of 20.5-hour videos, 27,328 fine-grained sentences for scene description, and 8,913 story-related QA pairs. Our experimental results show that the DEMN outperforms other QA models. This is mainly due to 1) the reconstruction of video stories in a scene-dialogue combined form that utilize the latent embedding and 2) attention. DEMN also achieved state-of-the-art results on the MovieQA benchmark.Comment: 7 pages, accepted for IJCAI 201

    Finding Answers from the Word of God: Domain Adaptation for Neural Networks in Biblical Question Answering

    Full text link
    Question answering (QA) has significantly benefitted from deep learning techniques in recent years. However, domain-specific QA remains a challenge due to the significant amount of data required to train a neural network. This paper studies the answer sentence selection task in the Bible domain and answer questions by selecting relevant verses from the Bible. For this purpose, we create a new dataset BibleQA based on bible trivia questions and propose three neural network models for our task. We pre-train our models on a large-scale QA dataset, SQuAD, and investigate the effect of transferring weights on model accuracy. Furthermore, we also measure the model accuracies with different answer context lengths and different Bible translations. We affirm that transfer learning has a noticeable improvement in the model accuracy. We achieve relatively good results with shorter context lengths, whereas longer context lengths decreased model accuracy. We also find that using a more modern Bible translation in the dataset has a positive effect on the task.Comment: The paper has been accepted at IJCNN 201

    Learning to Rank Question Answer Pairs with Holographic Dual LSTM Architecture

    Full text link
    We describe a new deep learning architecture for learning to rank question answer pairs. Our approach extends the long short-term memory (LSTM) network with holographic composition to model the relationship between question and answer representations. As opposed to the neural tensor layer that has been adopted recently, the holographic composition provides the benefits of scalable and rich representational learning approach without incurring huge parameter costs. Overall, we present Holographic Dual LSTM (HD-LSTM), a unified architecture for both deep sentence modeling and semantic matching. Essentially, our model is trained end-to-end whereby the parameters of the LSTM are optimized in a way that best explains the correlation between question and answer representations. In addition, our proposed deep learning architecture requires no extensive feature engineering. Via extensive experiments, we show that HD-LSTM outperforms many other neural architectures on two popular benchmark QA datasets. Empirical studies confirm the effectiveness of holographic composition over the neural tensor layer.Comment: SIGIR 2017 Full Pape

    Answer Sequence Learning with Neural Networks for Answer Selection in Community Question Answering

    Full text link
    In this paper, the answer selection problem in community question answering (CQA) is regarded as an answer sequence labeling task, and a novel approach is proposed based on the recurrent architecture for this problem. Our approach applies convolution neural networks (CNNs) to learning the joint representation of question-answer pair firstly, and then uses the joint representation as input of the long short-term memory (LSTM) to learn the answer sequence of a question for labeling the matching quality of each answer. Experiments conducted on the SemEval 2015 CQA dataset shows the effectiveness of our approach.Comment: 6 page

    Supervised Transfer Learning for Product Information Question Answering

    Full text link
    Popular e-commerce websites such as Amazon offer community question answering systems for users to pose product related questions and experienced customers may provide answers voluntarily. In this paper, we show that the large volume of existing community question answering data can be beneficial when building a system for answering questions related to product facts and specifications. Our experimental results demonstrate that the performance of a model for answering questions related to products listed in the Home Depot website can be improved by a large margin via a simple transfer learning technique from an existing large-scale Amazon community question answering dataset. Transfer learning can result in an increase of about 10% in accuracy in the experimental setting where we restrict the size of the data of the target task used for training. As an application of this work, we integrate the best performing model trained in this work into a mobile-based shopping assistant and show its usefulness.Comment: 2018 17th IEEE International Conference on Machine Learning and Application
    • …
    corecore