18,329 research outputs found

    BIM semantic-enrichment for built heritage representation

    Get PDF
    In the built heritage context, BIM has shown difficulties in representing and managing the large and complex knowledge related to non-geometrical aspects of the heritage. Within this scope, this paper focuses on a domain-specific semantic-enrichment of BIM methodology, aimed at fulfilling semantic representation requirements of built heritage through Semantic Web technologies. To develop this semantic-enriched BIM approach, this research relies on the integration of a BIM environment with a knowledge base created through information ontologies. The result is knowledge base system - and a prototypal platform - that enhances semantic representation capabilities of BIM application to architectural heritage processes. It solves the issue of knowledge formalization in cultural heritage informative models, favouring a deeper comprehension and interpretation of all the building aspects. Its open structure allows future research to customize, scale and adapt the knowledge base different typologies of artefacts and heritage activities

    The "MIND" Scalable PIM Architecture

    Get PDF
    MIND (Memory, Intelligence, and Network Device) is an advanced parallel computer architecture for high performance computing and scalable embedded processing. It is a Processor-in-Memory (PIM) architecture integrating both DRAM bit cells and CMOS logic devices on the same silicon die. MIND is multicore with multiple memory/processor nodes on each chip and supports global shared memory across systems of MIND components. MIND is distinguished from other PIM architectures in that it incorporates mechanisms for efficient support of a global parallel execution model based on the semantics of message-driven multithreaded split-transaction processing. MIND is designed to operate either in conjunction with other conventional microprocessors or in standalone arrays of like devices. It also incorporates mechanisms for fault tolerance, real time execution, and active power management. This paper describes the major elements and operational methods of the MIND architecture

    Protecting Cyber Physical Systems Using a Learned MAPE-K Model

    Get PDF

    End-Of-Line Testing

    Get PDF

    Experiences Developing Safe and Fault-Tolerant Tele-Operated Service Robots. A Case Study in Shipyards

    Get PDF
    Human operators use tele-operated service robots for performing more or less hazardous operations (manipulation of heavy and/or dangerous products) in more or less hostile environments (nuclear reactors, space missions, warehouses, etc). Anyway, independently of the operation, the robot has to interact with both the environment it is working on and with human operators. Therefore, it is essential that the design (which include both software and hardware) of the robot involves no risk, or at least an acceptable level of risk, neither for the operators, nor for the environment nor for the robot itself. Nevertheless, it is not always possible to make a system free of failures in its design or operation. Apart from the risk inherent to the use of the mechanisms themselves, these systems work in hazardous environments, where the probability of the risk is higher than normal. Should a failure happen, its consequences could even involve the loss of human lives. (Neumann, 1994) documents many cases of computer-related failures, such as the Therac-25 (a radiation-therapy device), the missiles shield in Saudi Arabia, etc. Nevertheless, safety aspects are seldom included in the early phases of the system design process from the beginning, even though they are a critic aspect. Generally, safety has to conform and adapt to the already designed system and not vice versa, when it is widely known that safety involves not only the design of the software but also the hardware. Even more, a simple hardware solution can eliminate a hazard or simplify the software design in many situations.This research has been funded by the Spanish CICYT project MEDWSA (TIN2006-15175- C05-02) and the Regional Government of Murcia Séneca Program (02998-PI-05)
    • …
    corecore