82,361 research outputs found

    A canonical theory of dynamic decision-making

    Get PDF
    Decision-making behavior is studied in many very different fields, from medicine and eco- nomics to psychology and neuroscience, with major contributions from mathematics and statistics, computer science, AI, and other technical disciplines. However the conceptual- ization of what decision-making is and methods for studying it vary greatly and this has resulted in fragmentation of the field. A theory that can accommodate various perspectives may facilitate interdisciplinary working. We present such a theory in which decision-making is articulated as a set of canonical functions that are sufficiently general to accommodate diverse viewpoints, yet sufficiently precise that they can be instantiated in different ways for specific theoretical or practical purposes. The canons cover the whole decision cycle, from the framing of a decision based on the goals, beliefs, and background knowledge of the decision-maker to the formulation of decision options, establishing preferences over them, and making commitments. Commitments can lead to the initiation of new decisions and any step in the cycle can incorporate reasoning about previous decisions and the rationales for them, and lead to revising or abandoning existing commitments. The theory situates decision-making with respect to other high-level cognitive capabilities like problem solving, planning, and collaborative decision-making. The canonical approach is assessed in three domains: cognitive and neuropsychology, artificial intelligence, and decision engineering

    Atomism, Identity Criteria, and Impossibility Logic

    Get PDF

    How Models Fail. A Critical Look at the History of Computer Simulations of the Evolution of Cooperation

    Get PDF
    Simulation models of the Reiterated Prisoner's Dilemma have been popular for studying the evolution of cooperation since more than 30 years now. However, there have been practically no successful instances of empirical application of any of these models. At the same time this lack of empirical testing and confirmation has almost entirely been ignored by the modelers community. In this paper, I examine some of the typical narratives and standard arguments with which these models are justified by their authors despite the lack of empirical validation. I find that most of the narratives and arguments are not at all compelling. None the less they seem to serve an important function in keeping the simulation business running despite its empirical shortcomings

    Intrusiveness, Trust and Argumentation: Using Automated Negotiation to Inhibit the Transmission of Disruptive Information

    No full text
    The question of how to promote the growth and diffusion of information has been extensively addressed by a wide research community. A common assumption underpinning most studies is that the information to be transmitted is useful and of high quality. In this paper, we endorse a complementary perspective. We investigate how the growth and diffusion of high quality information can be managed and maximized by preventing, dampening and minimizing the diffusion of low quality, unwanted information. To this end, we focus on the conflict between pervasive computing environments and the joint activities undertaken in parallel local social contexts. When technologies for distributed activities (e.g. mobile technology) develop, both artifacts and services that enable people to participate in non-local contexts are likely to intrude on local situations. As a mechanism for minimizing the intrusion of the technology, we develop a computational model of argumentation-based negotiation among autonomous agents. A key component in the model is played by trust: what arguments are used and how they are evaluated depend on how trustworthy the agents judge one another. To gain an insight into the implications of the model, we conduct a number of virtual experiments. Results enable us to explore how intrusiveness is affected by trust, the negotiation network and the agents' abilities of conducting argumentation

    Representing Conversations for Scalable Overhearing

    Full text link
    Open distributed multi-agent systems are gaining interest in the academic community and in industry. In such open settings, agents are often coordinated using standardized agent conversation protocols. The representation of such protocols (for analysis, validation, monitoring, etc) is an important aspect of multi-agent applications. Recently, Petri nets have been shown to be an interesting approach to such representation, and radically different approaches using Petri nets have been proposed. However, their relative strengths and weaknesses have not been examined. Moreover, their scalability and suitability for different tasks have not been addressed. This paper addresses both these challenges. First, we analyze existing Petri net representations in terms of their scalability and appropriateness for overhearing, an important task in monitoring open multi-agent systems. Then, building on the insights gained, we introduce a novel representation using Colored Petri nets that explicitly represent legal joint conversation states and messages. This representation approach offers significant improvements in scalability and is particularly suitable for overhearing. Furthermore, we show that this new representation offers a comprehensive coverage of all conversation features of FIPA conversation standards. We also present a procedure for transforming AUML conversation protocol diagrams (a standard human-readable representation), to our Colored Petri net representation

    Review of \u3cem\u3eEconomic Theory and Cognitive Science\u3c/em\u3e by Don Ross

    Get PDF
    • ā€¦
    corecore