5,252 research outputs found

    Blockchain-based access control management for Decentralized Online Social Networks

    Get PDF
    Online Social Networks (OSNs) represent today a big communication channel where users spend a lot of time to share personal data. Unfortunately, the big popularity of OSNs can be compared with their big privacy issues. Indeed, several recent scandals have demonstrated their vulnerability. Decentralized Online Social Networks (DOSNs) have been proposed as an alternative solution to the current centralized OSNs. DOSNs do not have a service provider that acts as central authority and users have more control over their information. Several DOSNs have been proposed during the last years. However, the decentralization of the social services requires efficient distributed solutions for protecting the privacy of users. During the last years the blockchain technology has been applied to Social Networks in order to overcome the privacy issues and to offer a real solution to the privacy issues in a decentralized system. However, in these platforms the blockchain is usually used as a storage, and content is public. In this paper, we propose a manageable and auditable access control framework for DOSNs using blockchain technology for the definition of privacy policies. The resource owner uses the public key of the subject to define auditable access control policies using Access Control List (ACL), while the private key associated with the subject's Ethereum account is used to decrypt the private data once access permission is validated on the blockchain. We provide an evaluation of our approach by exploiting the Rinkeby Ethereum testnet to deploy the smart contracts. Experimental results clearly show that our proposed ACL-based access control outperforms the Attribute-based access control (ABAC) in terms of gas cost. Indeed, a simple ABAC evaluation function requires 280,000 gas, instead our scheme requires 61,648 gas to evaluate ACL rules

    Governance in Namespaces

    Get PDF

    Decentralized vs. Distributed Organization: Blockchain, Machine Learning and the Future of the Digital Platform

    Get PDF
    The terms decentralized organization and distributed organization are often used interchangeably, despite describing two distinct phenomena. I propose distinguishing decentralization, as the dispersion of organizational communications, from distribution, as the dispersion of organizational decision-making. Organizations can be distributed without being decentralized (and vice versa), and having multiple management layers directly affects only distribution – not decentralization. This proposed distinction has implications for understanding the growth of digital platforms (e.g. amazon.com), which dominate the global economy in the 21st century. While prominent platforms typically use machine learning as their core technology to transform inputs (e.g. data) into outputs (e.g. matchmaking services), blockchain has emerged as an alternative technological blueprint. I argue that blockchain enables platforms that are both decentralized and distributed (e.g. Bitcoin), whereas machine learning fosters centralized communications and the concentration of decision-making (e.g. Facebook Inc.). This distinction has crucial implications for antitrust policy, which, I contend, should shift both its analysis and its target of action away from the corporate level and focus instead on the data level. Based on this essay’s framework, I make several predictions regarding the future of competition between centralized and decentralized platforms, the evolution of government regulation, and broader implications for managers in the digital economy and for the business schools charged with their education. I conclude with reflections on the opportunity to revive cybernetic thinking for preventing a dystopian future dominated by a handful of platform behemoths

    A Taxonomy of Data Grids for Distributed Data Sharing, Management and Processing

    Full text link
    Data Grids have been adopted as the platform for scientific communities that need to share, access, transport, process and manage large data collections distributed worldwide. They combine high-end computing technologies with high-performance networking and wide-area storage management techniques. In this paper, we discuss the key concepts behind Data Grids and compare them with other data sharing and distribution paradigms such as content delivery networks, peer-to-peer networks and distributed databases. We then provide comprehensive taxonomies that cover various aspects of architecture, data transportation, data replication and resource allocation and scheduling. Finally, we map the proposed taxonomy to various Data Grid systems not only to validate the taxonomy but also to identify areas for future exploration. Through this taxonomy, we aim to categorise existing systems to better understand their goals and their methodology. This would help evaluate their applicability for solving similar problems. This taxonomy also provides a "gap analysis" of this area through which researchers can potentially identify new issues for investigation. Finally, we hope that the proposed taxonomy and mapping also helps to provide an easy way for new practitioners to understand this complex area of research.Comment: 46 pages, 16 figures, Technical Repor

    Cognitive Machine Individualism in a Symbiotic Cybersecurity Policy Framework for the Preservation of Internet of Things Integrity: A Quantitative Study

    Get PDF
    This quantitative study examined the complex nature of modern cyber threats to propose the establishment of cyber as an interdisciplinary field of public policy initiated through the creation of a symbiotic cybersecurity policy framework. For the public good (and maintaining ideological balance), there must be recognition that public policies are at a transition point where the digital public square is a tangible reality that is more than a collection of technological widgets. The academic contribution of this research project is the fusion of humanistic principles with Internet of Things (IoT) technologies that alters our perception of the machine from an instrument of human engineering into a thinking peer to elevate cyber from technical esoterism into an interdisciplinary field of public policy. The contribution to the US national cybersecurity policy body of knowledge is a unified policy framework (manifested in the symbiotic cybersecurity policy triad) that could transform cybersecurity policies from network-based to entity-based. A correlation archival data design was used with the frequency of malicious software attacks as the dependent variable and diversity of intrusion techniques as the independent variable for RQ1. For RQ2, the frequency of detection events was the dependent variable and diversity of intrusion techniques was the independent variable. Self-determination Theory is the theoretical framework as the cognitive machine can recognize, self-endorse, and maintain its own identity based on a sense of self-motivation that is progressively shaped by the machine’s ability to learn. The transformation of cyber policies from technical esoterism into an interdisciplinary field of public policy starts with the recognition that the cognitive machine is an independent consumer of, advisor into, and influenced by public policy theories, philosophical constructs, and societal initiatives

    A Social Network Image Classification Algorithm Based on Multimodal Deep Learning

    Get PDF
    The complex data structure and massive image data of social networks pose a huge challenge to the mining of associations between social information. For accurate classification of social network images, this paper proposes a social network image classification algorithm based on multimodal deep learning. Firstly, a social network association clustering model (SNACM) was established, and used to calculate trust and similarity, which represent the degree of similarity between users. Based on artificial ant colony algorithm, the SNACM was subject to weighted stacking, and the social network image association network was constructed. After that, the social network images of three modes, i.e. RGB (red-green-blue) image, grayscale image, and depth image, were fused. Finally, a three-dimensional neural network (3D NN) was constructed to extract the features of the multimodal social network image. The proposed algorithm was proved valid and accurate through experiments. The research results provide a reference for applying multimodal deep learning to classify the images in other fields
    • …
    corecore