68,434 research outputs found

    The Importance of Modularity in Bioinformatics Tools

    Get PDF
    In the last decade the amount of Bioinformatics tools has increased enormously. There are tools to store, analyse, visualize, edit or generate biological data and there are still more in development. Still, the demand for increased functionality in a single piece of software must be balanced by the need for modularity to keep the software maintainable. In complex systems, the conflicting demands of features and maintainability are often solved by plug-in systems.

For example Cytoscape, an open source platform for Complex-Network Analysis and Visualization, is using a plug-in system to allow the extension of the application without changing the core. This not only allows the integration of new functionality without a new release but offers the possibility for other developers to contribute plug-ins which are needed in their research.

Most tools have their own, individual plug-in system to meet the needs of the application. These are often very simple and easy to use. However, the increasing complexity of plug-ins demands more functionality of the plug-in system. We want to reuse components in different contexts, we want to have simple plug-in interfaces and we want to allow communication and dependencies between plug-ins. Many tools implemented in Java are facing these problems and there seems to be a common solution: the integration of an established modularity framework, like OSGi. To our knowledge, a number of developers of bioinformatics tools are already implementing, planning or thinking about the integration of OSGi into their applications, e.g. Cytoscape, Protege, PathVisio, ImageJ, Jalview or Chipster. The adoption of modularity frameworks in the development of bioinformatics applications is steadily increasing and should be considered in the design of new software.

By modularity in the traditional computer science sense, we mean the division of a software application into logical parts with separate concerns. To ease the development of software tools the application is separated into smaller logical parts, which are implemented individually. A set of modules can form a larger application but only if a proper glue is used, OSGi is an example of such a glue. OSGi allows to build an infrastructure into an application to add and use different modules. It provides mechanisms to allow the individual modules to rely on and interact with each other, opening the possibility to put together different modules to solve the problem at hand. Later, modules can be removed and new ones can be added to tackle another problem. As Katy Boerner in her article 'Plug-and-Play Macroscopes' writes, we should 'implement software frameworks that empower domain scientists to assemble their own continuously evolving macroscopes, adding and upgrading existing (and removing obsolete) plug-ins to arrive at a set that is truly relevant for their work'.

Some of these modules are going to be specific for one application but a lot of these modules can actually be reused by other tools. We are talking about general features like the import or export of different file formats, a layout algorithm that could be used by several visualization tools or the lookup in an external online database. Why should every tool implement its own parser or algorithm? Modularity can help to share functionality. There is no need to start from scratch and implement everything anew, thus developers can focus on new and important features.

Adding modularity, or better, a modularity framework to an existing software application is not a trivial task. The developers of Cytoscape are currently undertaking this challenge with the coming version 3. We are also working on the integration of OSGi into our pathway visualization tool PathVisio and we now want to share and compare our experiences, so others can benefit from our discoveries. This will not only help them in making a decision if OSGi is a suitable solution for them but also in the integration process itself

    A Formal Model of Semantic Web Service Ontology (WSMO) Execution

    Get PDF
    Semantic Web Services have been one of the most significant research areas within the Semantic Web vision, and have been recognized as a promising technology that exhibits huge commercial potential. Current Semantic Web Service research focuses on defining models and languages for the semantic markup of all relevant aspects of services, which are accessible through a Web service interface. The Web Service Modelling Ontology (WSMO) is one of the most significant Semantic Web Service framework proposed to date. To support the standardization and tool support of WSMO, a formal semantics of the language is highly desirable. As there are a few variants of WSMO and it is still under development, the semantics of WSMO needs to be formally defined to facilitate easy reuse and future development. In this paper, we present a formal Object-Z semantics of WSMO. Different aspects of the language have been precisely defined within one unified framework. This model provides a formal unambiguous specification, which can be used to develop tools and facilitate future development
    • ā€¦
    corecore