29 research outputs found

    Parsing Combinatory Categorial Grammar with Answer Set Programming: Preliminary Report

    Get PDF
    Combinatory categorial grammar (CCG) is a grammar formalism used for natural language parsing. CCG assigns structured lexical categories to words and uses a small set of combinatory rules to combine these categories to parse a sentence. In this work we propose and implement a new approach to CCG parsing that relies on a prominent knowledge representation formalism, answer set programming (ASP) - a declarative programming paradigm. We formulate the task of CCG parsing as a planning problem and use an ASP computational tool to compute solutions that correspond to valid parses. Compared to other approaches, there is no need to implement a specific parsing algorithm using such a declarative method. Our approach aims at producing all semantically distinct parse trees for a given sentence. From this goal, normalization and efficiency issues arise, and we deal with them by combining and extending existing strategies. We have implemented a CCG parsing tool kit - AspCcgTk - that uses ASP as its main computational means. The C&C supertagger can be used as a preprocessor within AspCcgTk, which allows us to achieve wide-coverage natural language parsing.Comment: 12 pages, 2 figures, Proceedings of the 25th Workshop on Logic Programming (WLP 2011

    \u3ci\u3eCorrect Reasoning: Essays on Logic-Based AI in Honour of Vladimir Lifschitz\u3c/i\u3e

    Get PDF
    Co-edited by Yuliya Lierler, UNO faculty member. Essay, Parsing Combinatory Categorial Grammar via Planning in Answer Set Programming, co-authored by Yuliya Lierler, UNO faculty member. This Festschrift published in honor of Vladimir Lifschitz on the occasion of his 65th birthday presents 39 articles by colleagues from all over the world with whom Vladimir Lifschitz had cooperation in various respects. The 39 contributions reflect the breadth and the depth of the work of Vladimir Lifschitz in logic programming, circumscription, default logic, action theory, causal reasoning and answer set programming.https://digitalcommons.unomaha.edu/facultybooks/1231/thumbnail.jp

    Evaluating Parsers with Dependency Constraints

    Get PDF
    Many syntactic parsers now score over 90% on English in-domain evaluation, but the remaining errors have been challenging to address and difficult to quantify. Standard parsing metrics provide a consistent basis for comparison between parsers, but do not illuminate what errors remain to be addressed. This thesis develops a constraint-based evaluation for dependency and Combinatory Categorial Grammar (CCG) parsers to address this deficiency. We examine the constrained and cascading impact, representing the direct and indirect effects of errors on parsing accuracy. This identifies errors that are the underlying source of problems in parses, compared to those which are a consequence of those problems. Kummerfeld et al. (2012) propose a static post-parsing analysis to categorise groups of errors into abstract classes, but this cannot account for cascading changes resulting from repairing errors, or limitations which may prevent the parser from applying a repair. In contrast, our technique is based on enforcing the presence of certain dependencies during parsing, whilst allowing the parser to choose the remainder of the analysis according to its grammar and model. We draw constraints for this process from gold-standard annotated corpora, grouping them into abstract error classes such as NP attachment, PP attachment, and clause attachment. By applying constraints from each error class in turn, we can examine how parsers respond when forced to correctly analyse each class. We show how to apply dependency constraints in three parsers: the graph-based MSTParser (McDonald and Pereira, 2006) and the transition-based ZPar (Zhang and Clark, 2011b) dependency parsers, and the C&C CCG parser (Clark and Curran, 2007b). Each is widely-used and influential in the field, and each generates some form of predicate-argument dependencies. We compare the parsers, identifying common sources of error, and differences in the distribution of errors between constrained and cascaded impact. Our work allows us to contrast the implementations of each parser, and how they respond to constraint application. Using our analysis, we experiment with new features for dependency parsing, which encode the frequency of proposed arcs in large-scale corpora derived from scanned books. These features are inspired by and extend on the work of Bansal and Klein (2011). We target these features at the most notable errors, and show how they address some, but not all of the difficult attachments across newswire and web text. CCG parsing is particularly challenging, as different derivations do not always generate different dependencies. We develop dependency hashing to address semantically redundant parses in n-best CCG parsing, and demonstrate its necessity and effectiveness. Dependency hashing substantially improves the diversity of n-best CCG parses, and improves a CCG reranker when used for creating training and test data. We show the intricacies of applying constraints to C&C, and describe instances where applying constraints causes the parser to produce a worse analysis. These results illustrate how algorithms which are relatively straightforward for constituency and dependency parsers are non-trivial to implement in CCG. This work has explored dependencies as constraints in dependency and CCG parsing. We have shown how dependency hashing can efficiently eliminate semantically redundant CCG n-best parses, and presented a new evaluation framework based on enforcing the presence of dependencies in the output of the parser. By otherwise allowing the parser to proceed as it would have, we avoid the assumptions inherent in other work. We hope this work will provide insights into the remaining errors in parsing, and target efforts to address those errors, creating better syntactic analysis for downstream applications

    Unsupervised grammar induction with Combinatory Categorial Grammars

    Get PDF
    Language is a highly structured medium for communication. An idea starts in the speaker's mind (semantics) and is transformed into a well formed, intelligible, sentence via the specific syntactic rules of a language. We aim to discover the fingerprints of this process in the choice and location of words used in the final utterance. What is unclear is how much of this latent process can be discovered from the linguistic signal alone and how much requires shared non-linguistic context, knowledge, or cues. Unsupervised grammar induction is the task of analyzing strings in a language to discover the latent syntactic structure of the language without access to labeled training data. Successes in unsupervised grammar induction shed light on the amount of syntactic structure that is discoverable from raw or part-of-speech tagged text. In this thesis, we present a state-of-the-art grammar induction system based on Combinatory Categorial Grammars. Our choice of syntactic formalism enables the first labeled evaluation of an unsupervised system. This allows us to perform an in-depth analysis of the system’s linguistic strengths and weaknesses. In order to completely eliminate reliance on any supervised systems, we also examine how performance is affected when we use induced word clusters instead of gold-standard POS tags. Finally, we perform a semantic evaluation of induced grammars, providing unique insights into future directions for unsupervised grammar induction systems

    Grammar logicised: relativisation

    Get PDF
    Many variants of categorial grammar assume an underlying logic which is associative and linear. In relation to left extraction, the former property is challenged by island domains, which involve nonassociativity, and the latter property is challenged by parasitic gaps, which involve nonlinearity. We present a version of type logical grammar including ‘structural inhibition’ for nonassociativity and ‘structural facilitation’ for nonlinearity and we give an account of relativisation including islands and parasitic gaps and their interaction.Peer ReviewedPostprint (published version

    Derivation and structure in categorial grammar

    Get PDF

    On Internal Merge

    Get PDF
    corecore