166,190 research outputs found

    Quantum Team Logic and Bell's Inequalities

    Get PDF
    A logical approach to Bell's Inequalities of quantum mechanics has been introduced by Abramsky and Hardy [2]. We point out that the logical Bell's Inequalities of [2] are provable in the probability logic of Fagin, Halpern and Megiddo [4]. Since it is now considered empirically established that quantum mechanics violates Bell's Inequalities, we introduce a modified probability logic, that we call quantum team logic, in which Bell's Inequalities are not provable, and prove a Completeness Theorem for this logic. For this end we generalise the team semantics of dependence logic [7] first to probabilistic team semantics, and then to what we call quantum team semantics

    Fuzzy inequational logic

    Full text link
    We present a logic for reasoning about graded inequalities which generalizes the ordinary inequational logic used in universal algebra. The logic deals with atomic predicate formulas of the form of inequalities between terms and formalizes their semantic entailment and provability in graded setting which allows to draw partially true conclusions from partially true assumptions. We follow the Pavelka approach and define general degrees of semantic entailment and provability using complete residuated lattices as structures of truth degrees. We prove the logic is Pavelka-style complete. Furthermore, we present a logic for reasoning about graded if-then rules which is obtained as particular case of the general result

    Possible Experience: from Boole to Bell

    Full text link
    Mainstream interpretations of quantum theory maintain that violations of the Bell inequalities deny at least either realism or Einstein locality. Here we investigate the premises of the Bell-type inequalities by returning to earlier inequalities presented by Boole and the findings of Vorob'ev as related to these inequalities. These findings together with a space-time generalization of Boole's elements of logic lead us to a completely transparent Einstein local counterexample from everyday life that violates certain variations of the Bell inequalities. We show that the counterexample suggests an interpretation of the Born rule as a pre-measure of probability that can be transformed into a Kolmogorov probability measure by certain Einstein local space-time characterizations of the involved random variables.Comment: Published in: EPL, 87 (2009) 6000

    About Nonstandard Neutrosophic Logic (Answers to Imamura 'Note on the Definition of Neutrosophic Logic')

    Full text link
    In order to more accurately situate and fit the neutrosophic logic into the framework of nonstandard analysis, we present the neutrosophic inequalities, neutrosophic equality, neutrosophic infimum and supremum, neutrosophic standard intervals, including the cases when the neutrosophic logic standard and nonstandard components T, I, F get values outside of the classical real unit interval [0, 1], and a brief evolution of neutrosophic operators. The paper intends to answer Imamura criticism that we found benefic in better understanding the nonstandard neutrosophic logic, although the nonstandard neutrosophic logic was never used in practical applications.Comment: 16 page

    Reasoning with global assumptions in arithmetic modal logics

    Get PDF
    We establish a generic upper bound ExpTime for reasoning with global assumptions in coalgebraic modal logics. Unlike earlier results of this kind, we do not require a tractable set of tableau rules for the in- stance logics, so that the result applies to wider classes of logics. Examples are Presburger modal logic, which extends graded modal logic with linear inequalities over numbers of successors, and probabilistic modal logic with polynomial inequalities over probabilities. We establish the theoretical upper bound using a type elimination algorithm. We also provide a global caching algorithm that offers potential for practical reasoning
    • …
    corecore