159 research outputs found

    Smooth Approximations and Relational Width Collapses

    Get PDF
    We prove that relational structures admitting specific polymorphisms (namely, canonical pseudo-WNU operations of all arities n ? 3) have low relational width. This implies a collapse of the bounded width hierarchy for numerous classes of infinite-domain CSPs studied in the literature. Moreover, we obtain a characterization of bounded width for first-order reducts of unary structures and a characterization of MMSNP sentences that are equivalent to a Datalog program, answering a question posed by Bienvenu et al.. In particular, the bounded width hierarchy collapses in those cases as well

    Smooth Approximations and Relational Width Collapses

    Get PDF
    We prove that relational structures admitting specific polymorphisms (namely, canonical pseudo-WNU operations of all arities n≥3n \geq 3) have low relational width. This implies a collapse of the bounded width hierarchy for numerous classes of infinite-domain CSPs studied in the literature. Moreover, we obtain a characterization of bounded width for first-order reducts of unary structures and a characterization of MMSNP sentences that are equivalent to a Datalog program, answering a question posed by Bienvenu, ten Cate, Lutz, and Wolter. In particular, the bounded width hierarchy collapses in those cases as well

    Constraint Network Satisfaction for Finite Relation Algebras

    Get PDF
    Network satisfaction problems (NSPs) for finite relation algebras are computational decision problems, studied intensively since the 1990s. The major open research challenge in this field is to understand which of these problems are solvable by polynomial-time algorithms. Since there are known examples of undecidable NSPs of finite relation algebras it is advisable to restrict the scope of such a classification attempt to well-behaved subclasses of relation algebras. The class of relation algebras with a normal representation is such a well-behaved subclass. Many well-known examples of relation algebras, such as the Point Algebra, RCC5, and Allen’s Interval Algebra admit a normal representation. The great advantage of finite relation algebras with normal representations is that their NSP is essentially the same as a constraint satisfaction problem (CSP). For a relational structure B the problem CSP(B) is the computational problem to decide whether a given finite relational structure C has a homomorphism to B. The study of CSPs has a long and rich history, culminating for the time being in the celebrated proofs of the Feder-Vardi dichotomy conjecture. Bulatov and Zhuk independently proved that for every finite structure B the problem CSP(B) is in P or NP-complete. Both proofs rely on the universal-algebraic approach, a powerful theory that connects algebraic properties of structures B with complexity results for the decision problems CSP(B). Our contributions to the field are divided into three parts. Firstly, we provide two algebraic criteria for NP-hardness of NSPs. Our second result is a complete classification of the complexity of NSPs for symmetric relation algebras with a flexible atom; these problems are in P or NP-complete. Our result is obtained via a decidable condition on the relation algebra which implies polynomial-time tractability of the NSP. As a third contribution we prove that for a large class of NSPs, non-hardness implies that the problems can even be solved by Datalog programs, unless P = NP. This result can be used to strengthen the dichotomy result for NSPs of symmetric relation algebras with a flexible atom: every such problem can be solved by a Datalog program or is NP-complete. Our proof relies equally on known results and new observations in the algebraic analysis of finite structures. The CSPs that emerge from NSPs are typically of the form CSP(B) for an infinite structure B and therefore do not fall into the scope of the dichotomy result for finite structures. In this thesis we study NSPs of finite relation algebras with normal representations by the universal algebraic methods which were developed for the study of finite and infinite-domain CSPs. We additionally make use of model theory and a Ramsey-type result of Nešetril and Rödl. Our contributions to the field are divided into three parts. Firstly, we provide two algebraic criteria for NP-hardness of NSPs. Our second result is a complete classification of the complexity of NSPs for symmetric relation algebras with a flexible atom; these problems are in P or NP-complete. Our result is obtained via a decidable condition on the relation algebra which implies polynomial-time tractability of the NSP. As a third contribution we prove that for a large class of NSPs the containment in P implies that the problems can even be solved by Datalog programs, unless P = NP. As a third contribution we prove that for a large class of NSPs, non-hardness implies that the problems can even be solved by Datalog programs, unless P = NP. This result can be used to strengthen the dichotomy result for NSPs of symmetric relation algebras with a flexible atom: every such problem can be solved by a Datalog program or is NP-complete. Our proof relies equally on known results and new observations in the algebraic analysis of finite structures

    Lower bounds on the size of semidefinite programming relaxations

    Full text link
    We introduce a method for proving lower bounds on the efficacy of semidefinite programming (SDP) relaxations for combinatorial problems. In particular, we show that the cut, TSP, and stable set polytopes on nn-vertex graphs are not the linear image of the feasible region of any SDP (i.e., any spectrahedron) of dimension less than 2nc2^{n^c}, for some constant c>0c > 0. This result yields the first super-polynomial lower bounds on the semidefinite extension complexity of any explicit family of polytopes. Our results follow from a general technique for proving lower bounds on the positive semidefinite rank of a matrix. To this end, we establish a close connection between arbitrary SDPs and those arising from the sum-of-squares SDP hierarchy. For approximating maximum constraint satisfaction problems, we prove that SDPs of polynomial-size are equivalent in power to those arising from degree-O(1)O(1) sum-of-squares relaxations. This result implies, for instance, that no family of polynomial-size SDP relaxations can achieve better than a 7/8-approximation for MAX-3-SAT

    Definability of semidefinite programming and lasserre lower bounds for CSPs

    Get PDF
    We show that the ellipsoid method for solving semidefinite programs (SDPs) can be expressed in fixed-point logic with counting (FPC). This generalizes an earlier result that the optimal value of a linear program can be expressed in this logic. As an application, we establish lower bounds on the number of levels of the Lasserre hierarchy required to solve many optimization problems, namely those that can be expressed as finite-valued constraint satisfaction problems (VCSPs). In particular, we establish a dichotomy on the number of levels of the Lasserre hierarchy that are required to solve the problem exactly. We show that if a finite-valued constraint problem is not solved exactly by its basic linear programming relaxation, it is also not solved exactly by any sub-linear number of levels of the Lasserre hierarchy. The lower bounds are established through logical undefinability results. We show that the SDP corresponding to any fixed level of the Lasserre hierarchy is interpretable in a VCSP instance by means of FPC formulas. Our definability result of the ellipsoid method then implies that the solution of this SDP can be expressed in this logic. Together, these results give a way of translating lower bounds on the number of variables required in counting logic to express a VCSP into lower bounds on the number of levels required in the Lasserre hierarchy to eliminate the integrality gap. As a special case, we obtain the same dichotomy for the class of MAXCSP problems, generalizing earlier Lasserre lower bound results by Schoenebeck [17]. Recently, and independently of the work reported here, a similar linear lower bound in the Lasserre hierarchy for general-valued CSPs has also been announced by Thapper and Zivny [20], using different techniques

    Complexity of Discrete Energy Minimization Problems

    Full text link
    Discrete energy minimization is widely-used in computer vision and machine learning for problems such as MAP inference in graphical models. The problem, in general, is notoriously intractable, and finding the global optimal solution is known to be NP-hard. However, is it possible to approximate this problem with a reasonable ratio bound on the solution quality in polynomial time? We show in this paper that the answer is no. Specifically, we show that general energy minimization, even in the 2-label pairwise case, and planar energy minimization with three or more labels are exp-APX-complete. This finding rules out the existence of any approximation algorithm with a sub-exponential approximation ratio in the input size for these two problems, including constant factor approximations. Moreover, we collect and review the computational complexity of several subclass problems and arrange them on a complexity scale consisting of three major complexity classes -- PO, APX, and exp-APX, corresponding to problems that are solvable, approximable, and inapproximable in polynomial time. Problems in the first two complexity classes can serve as alternative tractable formulations to the inapproximable ones. This paper can help vision researchers to select an appropriate model for an application or guide them in designing new algorithms.Comment: ECCV'16 accepte
    • …
    corecore