135 research outputs found

    Low rank matrix recovery from rank one measurements

    Full text link
    We study the recovery of Hermitian low rank matrices XCn×nX \in \mathbb{C}^{n \times n} from undersampled measurements via nuclear norm minimization. We consider the particular scenario where the measurements are Frobenius inner products with random rank-one matrices of the form ajaja_j a_j^* for some measurement vectors a1,...,ama_1,...,a_m, i.e., the measurements are given by yj=tr(Xajaj)y_j = \mathrm{tr}(X a_j a_j^*). The case where the matrix X=xxX=x x^* to be recovered is of rank one reduces to the problem of phaseless estimation (from measurements, yj=x,aj2y_j = |\langle x,a_j\rangle|^2 via the PhaseLift approach, which has been introduced recently. We derive bounds for the number mm of measurements that guarantee successful uniform recovery of Hermitian rank rr matrices, either for the vectors aja_j, j=1,...,mj=1,...,m, being chosen independently at random according to a standard Gaussian distribution, or aja_j being sampled independently from an (approximate) complex projective tt-design with t=4t=4. In the Gaussian case, we require mCrnm \geq C r n measurements, while in the case of 44-designs we need mCrnlog(n)m \geq Cr n \log(n). Our results are uniform in the sense that one random choice of the measurement vectors aja_j guarantees recovery of all rank rr-matrices simultaneously with high probability. Moreover, we prove robustness of recovery under perturbation of the measurements by noise. The result for approximate 44-designs generalizes and improves a recent bound on phase retrieval due to Gross, Kueng and Krahmer. In addition, it has applications in quantum state tomography. Our proofs employ the so-called bowling scheme which is based on recent ideas by Mendelson and Koltchinskii.Comment: 24 page

    Geometry of logarithmic strain measures in solid mechanics

    Full text link
    We consider the two logarithmic strain measuresωiso=devnlogU=devnlogFTF and ωvol=tr(logU)=tr(logFTF),\omega_{\rm iso}=\|\mathrm{dev}_n\log U\|=\|\mathrm{dev}_n\log \sqrt{F^TF}\|\quad\text{ and }\quad \omega_{\rm vol}=|\mathrm{tr}(\log U)|=|\mathrm{tr}(\log\sqrt{F^TF})|\,,which are isotropic invariants of the Hencky strain tensor logU\log U, and show that they can be uniquely characterized by purely geometric methods based on the geodesic distance on the general linear group GL(n)\mathrm{GL}(n). Here, FF is the deformation gradient, U=FTFU=\sqrt{F^TF} is the right Biot-stretch tensor, log\log denotes the principal matrix logarithm, .\|.\| is the Frobenius matrix norm, tr\mathrm{tr} is the trace operator and devnX\mathrm{dev}_n X is the nn-dimensional deviator of XRn×nX\in\mathbb{R}^{n\times n}. This characterization identifies the Hencky (or true) strain tensor as the natural nonlinear extension of the linear (infinitesimal) strain tensor ε=symu\varepsilon=\mathrm{sym}\nabla u, which is the symmetric part of the displacement gradient u\nabla u, and reveals a close geometric relation between the classical quadratic isotropic energy potential μdevnsymu2+κ2[tr(symu)]2=μdevnε2+κ2[tr(ε)]2\mu\,\|\mathrm{dev}_n\mathrm{sym}\nabla u\|^2+\frac{\kappa}{2}\,[\mathrm{tr}(\mathrm{sym}\nabla u)]^2=\mu\,\|\mathrm{dev}_n\varepsilon\|^2+\frac{\kappa}{2}\,[\mathrm{tr}(\varepsilon)]^2in linear elasticity and the geometrically nonlinear quadratic isotropic Hencky energyμdevnlogU2+κ2[tr(logU)]2=μωiso2+κ2ωvol2,\mu\,\|\mathrm{dev}_n\log U\|^2+\frac{\kappa}{2}\,[\mathrm{tr}(\log U)]^2=\mu\,\omega_{\rm iso}^2+\frac\kappa2\,\omega_{\rm vol}^2\,,where μ\mu is the shear modulus and κ\kappa denotes the bulk modulus. Our deduction involves a new fundamental logarithmic minimization property of the orthogonal polar factor RR, where F=RUF=R\,U is the polar decomposition of FF. We also contrast our approach with prior attempts to establish the logarithmic Hencky strain tensor directly as the preferred strain tensor in nonlinear isotropic elasticity

    The relaxed-polar mechanism of locally optimal Cosserat rotations for an idealized nanoindentation and comparison with 3D-EBSD experiments

    Full text link
    The rotation polar(F)SO(3){\rm polar}(F) \in {\rm SO}(3) arises as the unique orthogonal factor of the right polar decomposition F=polar(F)UF = {\rm polar}(F) \cdot U of a given invertible matrix FGL+(3)F \in {\rm GL}^+(3). In the context of nonlinear elasticity Grioli (1940) discovered a geometric variational characterization of polar(F){\rm polar}(F) as a unique energy-minimizing rotation. In preceding works, we have analyzed a generalization of Grioli's variational approach with weights (material parameters) μ>0\mu > 0 and μc0\mu_c \geq 0 (Grioli: μ=μc\mu = \mu_c). The energy subject to minimization coincides with the Cosserat shear-stretch contribution arising in any geometrically nonlinear, isotropic and quadratic Cosserat continuum model formulated in the deformation gradient field F:=φ:ΩGL+(3)F := \nabla\varphi: \Omega \to {\rm GL}^+(3) and the microrotation field R:ΩSO(3)R: \Omega \to {\rm SO}(3). The corresponding set of non-classical energy-minimizing rotations rpolarμ,μc±(F):=argminRSO(3){Wμ,μc(R;F):=μsym(RTF1)2+μcskew(RTF1)2} {\rm rpolar}^\pm_{\mu,\mu_c}(F) := \substack{{\rm argmin}\\ R\,\in\,{\rm SO(3)}} \Big\{ W_{\mu, \mu_c}(R\,;F) := \mu\, || {\rm sym}(R^TF - 1)||^2 + \mu_c\, ||{\rm skew}(R^TF - 1)||^2 \Big\} represents a new relaxed-polar mechanism. Our goal is to motivate this mechanism by presenting it in a relevant setting. To this end, we explicitly construct a deformation mapping φnano\varphi_{\rm nano} which models an idealized nanoindentation and compare the corresponding optimal rotation patterns rpolar1,0±(Fnano){\rm rpolar}^\pm_{1,0}(F_{\rm nano}) with experimentally obtained 3D-EBSD measurements of the disorientation angle of lattice rotations due to a nanoindentation in solid copper. We observe that the non-classical relaxed-polar mechanism can produce interesting counter-rotations. A possible link between Cosserat theory and finite multiplicative plasticity theory on small scales is also explored.Comment: 28 pages, 11 figure
    corecore