298 research outputs found

    Smart home technology for aging

    Get PDF
    The majority of the growing population, in the US and the rest of the world requires some degree of formal and or informal care either due to the loss of function or failing health as a result of aging and most of them suffer from chronic disorders. The cost and burden of caring for elders is steadily increasing. This thesis focuses on providing the analysis of the technologies with which a Smart Home is built to improve the quality of life of the elderly. A great deal of emphasis is given to the sensor technologies that are the back bone of these Smart Homes. In addition to the Analysis of these technologies a survey of commercial sensor products and products in research that are concerned with monitoring the health of the occupants of the Smart Home is presented. A brief analysis on the communication technologies which form the communication infrastructure for the Smart Home is also illustrated. Finally, System Architecture for the Smart Home is proposed describing the functionality and users of the system. The feasibility of the system is also discussed. A scenario measuring the blood glucose level of the occupant in a Smart Home is presented as to support the system architecture presented

    System for monitoring and supporting the treatment of sleep apnea using IoT and big data

    Full text link
    [EN] Sleep apnea has become in the sleep disorder that causes greater concern in recent years due to its morbidity and mortality, higher medical care costs and poor people quality of life. Some proposals have addressed sleep apnea disease in elderly people, but they have still some technical limitations. For these reasons, this paper presents an innovative system based on fog and cloud computing technologies which in combination with IoT and big data platforms offers new opportunities to build novel and innovative services for supporting the sleep apnea and to overcome the current limitations. Particularly, the system is built on several low-power wireless networks with heterogeneous smart devices (i.e, sensors and actuators). In the fog, an edge node (Smart IoT Gateway) provides IoT connection and interoperability and pre-processing IoT data to detect events in real-time that might endanger the elderly's health and to act accordingly. In the cloud, a Generic Enabler Context Broker manages, stores and injects data into the big data analyzer for further processing and analyzing. The system's performance and subjective applicability are evaluated using over 30 GB size datasets and a questionnaire fulfilled by medicals specialist, respectively. Results show that the system data analytics improve the health professionals' decision making to monitor and guide sleep apnea treatment, as well as improving elderly people's quality of life. (C) 2018 Elsevier B.V. All rights reserved.This research was supported by the Ecuadorian Government through the Secretary of Higher Education, Science, Technology, and Innovation (SENESCYT) and has received funding from the European Union's "Horizon 2020'' research and innovation program as part of the ACTIVAGE project under Grant 732679 and the Interoperability of Heterogeneous IoT Platforms project (INTER-IoT) under Grant 687283.Yacchirema-Vargas, DC.; Sarabia-Jácome, DF.; Palau Salvador, CE.; Esteve Domingo, M. (2018). System for monitoring and supporting the treatment of sleep apnea using IoT and big data. Pervasive and Mobile Computing. 50:25-40. https://doi.org/10.1016/j.pmcj.2018.07.007S25405

    THE-FAME: THreshold based Energy-efficient FAtigue MEasurment for Wireless Body Area Sensor Networks using Multiple Sinks

    Full text link
    Wireless Body Area Sensor Network (WBASN) is a technology employed mainly for patient health monitoring. New research is being done to take the technology to the next level i.e. player's fatigue monitoring in sports. Muscle fatigue is the main cause of player's performance degradation. This type of fatigue can be measured by sensing the accumulation of lactic acid in muscles. Excess of lactic acid makes muscles feel lethargic. Keeping this in mind we propose a protocol \underline{TH}reshold based \underline{E}nergy-efficient \underline{FA}tigue \underline{ME}asurement (THE-FAME) for soccer players using WBASN. In THE-FAME protocol, a composite parameter has been used that consists of a threshold parameter for lactic acid accumulation and a parameter for measuring distance covered by a particular player. When any parameters's value in this composite parameter shows an increase beyond threshold, the players is declared to be in a fatigue state. The size of battery and sensor should be very small for the sake of players' best performance. These sensor nodes, implanted inside player's body, are made energy efficient by using multiple sinks instead of a single sink. Matlab simulation results show the effectiveness of THE-FAME.Comment: IEEE 8th International Conference on Broadband and Wireless Computing, Communication and Applications (BWCCA'13), Compiegne, Franc

    An event detection framework for the representation of the AGGIR variables

    Get PDF
    International audienceIn this paper, we propose a framework to study the AGGIR (Autonomy Gerontology Iso-Resources Groups) grid model, in order to evaluate the level of independency of elderly people, according to their capabilities of performing activities and interact with their environments over the time. To model the Activities of Daily Living (ADL), we also extend a previously proposed Domain Specific Language (DSL), in order to employ operators to deal with constraints related to time and location of activities, and event recognition. Our framework aims at providing an analysis tool regarding the performance of elder-ly/handicapped people within a home environment by means of data recovered from sensors using the iCASA simulator. To evaluate our approach, we pick three of the AGGIR variables (i.e., dressing, toileting, and transfers) and evaluate their testability in many scenarios, by means of records representing the occurrence of activities of the elderly. Results demonstrate the accuracy of our framework to manage the obtained records correctly and thus generate the appropriate event information

    Deployment of assisted living technology solution platform using smart body sensors for elderly people health monitoring.

    Get PDF
    Many of the Ambient Assisted Living Technologies (AALT) available in the market to the end-users with long term health condition have no common inter-operational protocol. Each product has its own communication protocols, different interfaces and interoperation which limits their solution reliability, flexibility and efficiency. This paper presents assisted living platform solution for elderly people with long term health condition based on wireless sensors networking technology. The system includes multi feedback sensor arrangements for monitoring, such as: blood pressure, heart rate and body temperature. Each sensor has been integrated with the necessary near real time embedded and wireless protocols that allow data collection, transfer and interoperate in ad-hoc bases. The data will be communicated wirelessly to central data base system and shared though cloud network. The collected data will be processed and relevant intelligent algorithms will be deployed to ensure certain actions taken place when health condition warnings arise. These warnings to be communicated to relevant carer, General Practitioner (GP) and health authority to take the necessary action and steps to handle such end user health condition warnings. The proposed solution system will provide the flexibility to analyse most of the health conditions based on near real time monitoring technology. It will enable the population of elderly with long term health condition to manage their daily life activities within multiple environments i.e. from their comfort home, care centres and hospitals. The data and information will be treated with high confidentiality to ensure end-users integrity and dignity have been maintained.N/

    VCare: A Personal Emergency Response System to Promote Safe and Independent Living Among Elders Staying by Themselves in Community or Residential Settings

    Get PDF
    ‘Population aging’ is a growing concern for most of us living in the twenty first century, primarily because many of us in the next few years will have a senior person to care for - spending money towards their healthcare expenditures AND/OR having to balance a full-time job with the responsibility of care-giving, travelling from another city to be with this elderly citizen who might be our parent, grand-parent or even community elders. As informal care-givers, if somehow we were able to monitor the day-to-day activities of our elderly dependents, and be alerted when wrong happens to them that would be of great help and lower the care-giving burden considerably. Information and Communication Technology (ICT) can certainly help in such a scenario, with tools and techniques that ensure safe living for the individual we are caring for, and save us from a lot of worry by providing us with anytime access into their lives or activities, and as a result check their functional state. However, we should be mindful of the tactics that could be adopted by harm causers to steal data stored in these products and try to curb the associated service costs. In short, we are in need of robust, cost-effective, useful, and secure solutions to help elders in our society to ‘age gracefully’. This work is a little step taken towards that direction. ‘Population aging’ is a growing concern for most of us living in the twenty first century, primarily because many of us in the next few years will have a senior person to care for - spending money towards their healthcare expenditures AND/OR having to balance a full-time job with the responsibility of care-giving, travelling from another city to be with this elderly citizen who might be our parent, grand-parent or even community elders. As informal care-givers, if somehow we were able to monitor the day-to-day activities of our elderly dependents, and be alerted when wrong happens to them that would be of great help and lower the care-giving burden considerably. Information and Communication Technology (ICT) can certainly help in such a scenario, with tools and techniques that ensure safe living for the individual we are caring for, and save us from a lot of worry by providing us with anytime access into their lives or activities, and as a result check their functional state. However, we should be mindful of the tactics that could be adopted by harm causers to steal data stored in these products and try to curb the associated service costs. In short, we are in need of robust, cost-effective, useful, and secure solutions to help elders in our society to ‘age gracefully’. This work is a little step taken towards that direction. Advisor: Tadeusz Wysock

    Smart Patient Monitoring System Using WSN & Android

    Get PDF
    Body area network (BAN) is an affirmating technology for real-time monitoring of physiological parameters of the patients. Tele medical system is provided when wireless technology is combined with body area network. When the Wireless Body Area Network comes in contact with the Android based smart phones gives a latest technology and is easy to use. The telemedical systems measures and evaluate the parameters such as, e.g. heart rate, blood pressure, temperature, vibration and level. (W)BAN along with the use of the sensors, localization of patient, stores the data, analysis and representation on the smartphone, transmission of the data and emergency communication with the one who enrolled his phone number and email address at the setting activity and a clinical server can perform the operation using this system. The Bluetooth based sensor nodes takes the parameters of patients then perform signal processing and data analysis, data recording and send results to the coordinator node. DOI: 10.17762/ijritcc2321-8169.150514

    A Smart Phone-based Personal Area Network for Remote Monitoring of Biosignals

    Get PDF
    This paper presents a system whose purpose is to monitor a patient continuously from indoor or outdoor environments. The system is based on a Bluetooth PAN, carried by the patient, whose central node, a smart phone, compiles information about patient’s location and health status. These data are encrypted to be sent to a server through Wifi or GPRS/UMTS. The system provides facilities to access to patient’s data, even from a smart phone by a J2ME application. It also allows to configure remotely the threshold values used to detect emergency situations.Ministerio de Eduación y Ciencia TEC2006-12211-C02-01/TCMMinisterio de Educación y Ciencia TIC2003- 07953-C02-0

    Wireless biomedical sensor networks: the technology

    Get PDF
    The increase in research in the area of wireless sensor networks (WSN) has brought a whole new meaning to medical devices. This is mainly due to advances in microcontroller technologies. The WSN are cited as one of the major technologies of this century and hence it assumes importance in areas such as health, psychology, fire prevention, security and even the military. The great advantage of this technology is the ability to track, monitor, study, understand and act on a particular phenomenon or event. The primary purpose of a wireless health system is reliable data transfer with minimum delay. This work is a synthesis of vast research done as Wireless Biomedical Sensor Networks (WBSN), including experimental and non-experimental investigations as well as data from the theoretical and empirical literature which incorporates a wide range of purposes: definition of concepts, review theories and evidence analysis of methodological problems, seeking to generate a consistent and understandable overview of WBSN. Such systems are already being marketed, some are still under investigation. It is also the aim of this study to identify the characteristics of a WSN applied to health.info:eu-repo/semantics/publishedVersio
    • …
    corecore