2,374 research outputs found

    WLAN Location Sharing through a Privacy Observant Architecture

    Get PDF
    In the last few years, WLAN has seen immense growth and it will continue this trend due to the fact that it provides convenient connectivity as well as high speed links. Furthermore, the infrastructure already exists in most public places and is cheap to extend. These advantages, together with the fact that WLAN covers a large area and is not restricted to line of sight, have led to developing many WLAN localization techniques and applications based on them. In this paper we present a novel calibration-free localization technique using the existing WLAN infrastructure that enables conference participants to determine their location without the need of a centralized system. The evaluation results illustrate the superiority of our technique compared to existing methods. In addition, we present a privacy observant architecture to share location information. We handle both the location of people and the resources in the infrastructure as services, which can be easily discovered and used. An important design issue for us was to avoid tracking people and giving the users control over who they share their location information with and under which conditions

    RF Localization in Indoor Environment

    Get PDF
    In this paper indoor localization system based on the RF power measurements of the Received Signal Strength (RSS) in WLAN environment is presented. Today, the most viable solution for localization is the RSS fingerprinting based approach, where in order to establish a relationship between RSS values and location, different machine learning approaches are used. The advantage of this approach based on WLAN technology is that it does not need new infrastructure (it reuses already and widely deployed equipment), and the RSS measurement is part of the normal operating mode of wireless equipment. We derive the Cramer-Rao Lower Bound (CRLB) of localization accuracy for RSS measurements. In analysis of the bound we give insight in localization performance and deployment issues of a localization system, which could help designing an efficient localization system. To compare different machine learning approaches we developed a localization system based on an artificial neural network, k-nearest neighbors, probabilistic method based on the Gaussian kernel and the histogram method. We tested the developed system in real world WLAN indoor environment, where realistic RSS measurements were collected. Experimental comparison of the results has been investigated and average location estimation error of around 2 meters was obtained

    SVGOpen Conference Guide: An overview

    Get PDF
    Context-aware applications are emerging on a daily basis and location information proves to be one of the key components in this domain. This stems from the fact that location information enables and facilitates reasoning about what users are doing (user's behavioural patterns) and what users are interested in. Availability of campus-wide WLAN infrastructure at University of Twente (UT) and the fact that SVGOpen 2005 was scheduled to be held at UT, were two strong driving forces towards building a location-aware conference guide. In this paper, a privacy-sensitive, location-aware service architecture is presented, which utilizes a calibration-free localization technique. The presented architecture uses existing WLAN infrastructure for cost efficiency, and uniquely incorporates the location information into Jini service discovery platform. Vector graphics provide better support for highly dynamic interface. Among all available vector formats, SVG proves to be a better choice to design the dynamic user interface and hence it was used in our implementation

    RFID Localisation For Internet Of Things Smart Homes: A Survey

    Full text link
    The Internet of Things (IoT) enables numerous business opportunities in fields as diverse as e-health, smart cities, smart homes, among many others. The IoT incorporates multiple long-range, short-range, and personal area wireless networks and technologies into the designs of IoT applications. Localisation in indoor positioning systems plays an important role in the IoT. Location Based IoT applications range from tracking objects and people in real-time, assets management, agriculture, assisted monitoring technologies for healthcare, and smart homes, to name a few. Radio Frequency based systems for indoor positioning such as Radio Frequency Identification (RFID) is a key enabler technology for the IoT due to its costeffective, high readability rates, automatic identification and, importantly, its energy efficiency characteristic. This paper reviews the state-of-the-art RFID technologies in IoT Smart Homes applications. It presents several comparable studies of RFID based projects in smart homes and discusses the applications, techniques, algorithms, and challenges of adopting RFID technologies in IoT smart home systems.Comment: 18 pages, 2 figures, 3 table

    K-Means Fingerprint Clustering for Low-Complexity Floor Estimation in Indoor Mobile Localization

    Full text link
    Indoor localization in multi-floor buildings is an important research problem. Finding the correct floor, in a fast and efficient manner, in a shopping mall or an unknown university building can save the users' search time and can enable a myriad of Location Based Services in the future. One of the most widely spread techniques for floor estimation in multi-floor buildings is the fingerprinting-based localization using Received Signal Strength (RSS) measurements coming from indoor networks, such as WLAN and BLE. The clear advantage of RSS-based floor estimation is its ease of implementation on a multitude of mobile devices at the Application Programming Interface (API) level, because RSS values are directly accessible through API interface. However, the downside of a fingerprinting approach, especially for large-scale floor estimation and positioning solutions, is their need to store and transmit a huge amount of fingerprinting data. The problem becomes more severe when the localization is intended to be done on mobile devices which have limited memory, power, and computational resources. An alternative floor estimation method, which has lower complexity and is faster than the fingerprinting is the Weighted Centroid Localization (WCL) method. The trade-off is however paid in terms of a lower accuracy than the one obtained with traditional fingerprinting with Nearest Neighbour (NN) estimates. In this paper a novel K-means-based method for floor estimation via fingerprint clustering of WiFi and various other positioning sensor outputs is introduced. Our method achieves a floor estimation accuracy close to the one with NN fingerprinting, while significantly improves the complexity and the speed of the floor detection algorithm. The decrease in the database size is achieved through storing and transmitting only the cluster heads (CH's) and their corresponding floor labels.Comment: Accepted to IEEE Globecom 2015, Workshop on Localization and Tracking: Indoors, Outdoors and Emerging Network

    Distributed storage manager system for synchronized and scalable AV services across networks

    Get PDF
    This article has been made available through the Brunel Open Access Publishing Fund - Copyright @ 2011 Hindawi Publishing CorporationThis paper provides an innovative solution, namely, the distributed storage manager that opens a new path for highly interactive and personalized services. The distributed storage manager provides an enhancement to the MHP storage management functionality acting as a value added middleware distributed across the network. The distributed storage manager system provides multiple protocol support for initializing and downloading both streamed and file-based content and provides optimum control mechanisms to organize the storing and retrieval of content that are remained accessible to other multiple heterogeneous devices
    • 

    corecore