2,923 research outputs found

    Electrical Signature Analysis of Synchronous Motors Under Some Mechanical Anomalies

    Get PDF
    Electrical Signature Analysis (ESA) has been introduced for some time to investigate the electrical anomalies of electric machines, especially for induction motors. More recently hints of using such an approach to analyze mechanical anomalies have appeared in the literature. Among them, some articles cover synchronous motors usually being employed to improve the power factor, drive green vehicles and reciprocating compressors or pumps with higher efficiency. Similarly with induction motors, the common mechanical anomalies of synchronous motor being analyzed using the ESA are air-gap eccentricity and single point bearing defects. However torsional effects, which are usually induced by torsional vibration of rotors and by generalized roughness bearing defects, have seldom been investigated using the ESA. This work presents an analytical method for ESA of rotor torsional vibration and an experimentally demonstrated approach for ESA of generalized roughness bearing defects. The torsional vibration of a shaft assembly usually induces rotor speed fluctuations resulting from the excitations in the electromagnetic (EM) or load torque. Actually, there is strong coupling within the system which is dynamically dependent on the interactions between the electromagnetic air-gap torque of the synchronous machine and the rotordynamics of the rotor shaft assembly. Typically this problem is solved as a one-way coupling by the unidirectional load transfer method, which is based on predetermined or assumed EM or load profile. It ignores the two-way interactions, especially during a start-up transient. In this work, a coupled equivalent circuit method is applied to reflect this coupling, and the simulation results show the significance of the proposed method by the practical case study of Electric Submersible Pump (ESP) system. The generalized roughness bearing anomaly is linked to load torque ripples which can cause speed oscillations, while being related to current signature by phase modulation. Considering that the induced characteristic signature is usually subtle broadband changes in the current spectrum, this signature is easily affected by input power quality variations, machine manufacturing imperfections and the interaction of both. A signal segmentation technique is introduced to isolate the influence of these disturbances and improve the effectiveness of applying the ESA for this kind of bearing defects. Furthermore, an improved experimental procedure is employed to closely resemble naturally occurring degradation of bearing, while isolating the influence of shaft currents on the signature of bearing defects during the experiments. The results show that the proposed method is effective in analyzing the generalized roughness bearing anomaly in synchronous motors

    An anomaly detection framework for cyber-security data

    Get PDF
    Data-driven anomaly detection systems unrivalled potential as complementary defence systems to existing signature-based tools as the number of cyber attacks increases. In this manuscript an anomaly detection system is presented that detects any abnormal deviations from the normal behaviour of an individual device. Device behaviour is defined as the number of network traffic events involving the device of interest observed within a pre-specified time period. The behaviour of each device at normal state is modelled to depend on its observed historic behaviour. A number of statistical and machine learning approaches are explored for modelling this relationship and through a comparative study, the Quantile Regression Forests approach is found to have the best predictive power. Based on the prediction intervals of the Quantile Regression Forests an anomaly detection system is proposed that characterises as abnormal, any observed behaviour outside of these intervals. A series of experiments for contaminating normal device behaviour are presented for examining the performance of the anomaly detection system. Through the conducted analysis the proposed anomaly detection system is found to outperform two other detection systems. The presented work has been conducted on two enterprise networks

    Flexible estimation of temporal point processes and graphs

    Get PDF
    Handling complex data types with spatial structures, temporal dependencies, or discrete values, is generally a challenge in statistics and machine learning. In the recent years, there has been an increasing need of methodological and theoretical work to analyse non-standard data types, for instance, data collected on protein structures, genes interactions, social networks or physical sensors. In this thesis, I will propose a methodology and provide theoretical guarantees for analysing two general types of discrete data emerging from interactive phenomena, namely temporal point processes and graphs. On the one hand, temporal point processes are stochastic processes used to model event data, i.e., data that comes as discrete points in time or space where some phenomenon occurs. Some of the most successful applications of these discrete processes include online messages, financial transactions, earthquake strikes, and neuronal spikes. The popularity of these processes notably comes from their ability to model unobserved interactions and dependencies between temporally and spatially distant events. However, statistical methods for point processes generally rely on estimating a latent, unobserved, stochastic intensity process. In this context, designing flexible models and consistent estimation methods is often a challenging task. On the other hand, graphs are structures made of nodes (or agents) and edges (or links), where an edge represents an interaction or relationship between two nodes. Graphs are ubiquitous to model real-world social, transport, and mobility networks, where edges can correspond to virtual exchanges, physical connections between places, or migrations across geographical areas. Besides, graphs are used to represent correlations and lead-lag relationships between time series, and local dependence between random objects. Graphs are typical examples of non-Euclidean data, where adequate distance measures, similarity functions, and generative models need to be formalised. In the deep learning community, graphs have become particularly popular within the field of geometric deep learning. Structure and dependence can both be modelled by temporal point processes and graphs, although predominantly, the former act on the temporal domain while the latter conceptualise spatial interactions. Nonetheless, some statistical models combine graphs and point processes in order to account for both spatial and temporal dependencies. For instance, temporal point processes have been used to model the birth times of edges and nodes in temporal graphs. Moreover, some multivariate point processes models have a latent graph parameter governing the pairwise causal relationships between the components of the process. In this thesis, I will notably study such a model, called the Hawkes model, as well as graphs evolving in time. This thesis aims at designing inference methods that provide flexibility in the contexts of temporal point processes and graphs. This manuscript is presented in an integrated format, with four main chapters and two appendices. Chapters 2 and 3 are dedicated to the study of Bayesian nonparametric inference methods in the generalised Hawkes point process model. While Chapter 2 provides theoretical guarantees for existing methods, Chapter 3 also proposes, analyses, and evaluates a novel variational Bayes methodology. The other main chapters introduce and study model-free inference approaches for two estimation problems on graphs, namely spectral methods for the signed graph clustering problem in Chapter 4, and a deep learning algorithm for the network change point detection task on temporal graphs in Chapter 5. Additionally, Chapter 1 provides an introduction and background preliminaries on point processes and graphs. Chapter 6 concludes this thesis with a summary and critical thinking on the works in this manuscript, and proposals for future research. Finally, the appendices contain two supplementary papers. The first one, in Appendix A, initiated after the COVID-19 outbreak in March 2020, is an application of a discrete-time Hawkes model to COVID-related deaths counts during the first wave of the pandemic. The second work, in Appendix B, was conducted during an internship at Amazon Research in 2021, and proposes an explainability method for anomaly detection models acting on multivariate time series

    Security, trust and cooperation in wireless sensor networks

    Get PDF
    Wireless sensor networks are a promising technology for many real-world applications such as critical infrastructure monitoring, scientific data gathering, smart buildings, etc.. However, given the typically unattended and potentially unsecured operation environment, there has been an increased number of security threats to sensor networks. In addition, sensor networks have very constrained resources, such as limited energy, memory, computational power, and communication bandwidth. These unique challenges call for new security mechanisms and algorithms. In this dissertation, we propose novel algorithms and models to address some important and challenging security problems in wireless sensor networks. The first part of the dissertation focuses on data trust in sensor networks. Since sensor networks are mainly deployed to monitor events and report data, the quality of received data must be ensured in order to make meaningful inferences from sensor data. We first study a false data injection attack in the distributed state estimation problem and propose a distributed Bayesian detection algorithm, which could maintain correct estimation results when less than one half of the sensors are compromised. To deal with the situation where more than one half of the sensors may be compromised, we introduce a special class of sensor nodes called \textit{trusted cores}. We then design a secure distributed trust aggregation algorithm that can utilize the trusted cores to improve network robustness. We show that as long as there exist some paths that can connect each regular node to one of these trusted cores, the network can not be subverted by attackers. The second part of the dissertation focuses on sensor network monitoring and anomaly detection. A sensor network may suffer from system failures due to loss of links and nodes, or malicious intrusions. Therefore, it is critical to continuously monitor the overall state of the network and locate performance anomalies. The network monitoring and probe selection problem is formulated as a budgeted coverage problem and a Markov decision process. Efficient probing strategies are designed to achieve a flexible tradeoff between inference accuracy and probing overhead. Based on the probing results on traffic measurements, anomaly detection can be conducted. To capture the highly dynamic network traffic, we develop a detection scheme based on multi-scale analysis of the traffic using wavelet transforms and hidden Markov models. The performance of the probing strategy and of the detection scheme are extensively evaluated in malicious scenarios using the NS-2 network simulator. Lastly, to better understand the role of trust in sensor networks, a game theoretic model is formulated to mathematically analyze the relation between trust and cooperation. Given the trust relations, the interactions among nodes are modeled as a network game on a trust-weighted graph. We then propose an efficient heuristic method that explores network heterogeneity to improve Nash equilibrium efficiency

    Towards Personalized and Human-in-the-Loop Document Summarization

    Full text link
    The ubiquitous availability of computing devices and the widespread use of the internet have generated a large amount of data continuously. Therefore, the amount of available information on any given topic is far beyond humans' processing capacity to properly process, causing what is known as information overload. To efficiently cope with large amounts of information and generate content with significant value to users, we require identifying, merging and summarising information. Data summaries can help gather related information and collect it into a shorter format that enables answering complicated questions, gaining new insight and discovering conceptual boundaries. This thesis focuses on three main challenges to alleviate information overload using novel summarisation techniques. It further intends to facilitate the analysis of documents to support personalised information extraction. This thesis separates the research issues into four areas, covering (i) feature engineering in document summarisation, (ii) traditional static and inflexible summaries, (iii) traditional generic summarisation approaches, and (iv) the need for reference summaries. We propose novel approaches to tackle these challenges, by: i)enabling automatic intelligent feature engineering, ii) enabling flexible and interactive summarisation, iii) utilising intelligent and personalised summarisation approaches. The experimental results prove the efficiency of the proposed approaches compared to other state-of-the-art models. We further propose solutions to the information overload problem in different domains through summarisation, covering network traffic data, health data and business process data.Comment: PhD thesi
    • …
    corecore