494 research outputs found

    Novel invisible markers for monitoring cracks on masonry structures

    Get PDF
    This paper presents a proof of concept for monitoring masonry structures using two different types of markers which are not easily noticeable by human eye but exhibit high reflection when subjected to NIR (near-infrared) wavelength of light. The first type is a retroreflective marker covered by a special tape that is opaque in visible light but translucent in NIR, while the second marker is a paint produced from infrared reflective pigments. The reflection of these markers is captured by a special camera-flash com- bination and processed using image processing algorithms. A series of experiments were conducted to verify their potential to monitor crack development. It is shown that the difference between the actual crack width and the measured was satisfactorily small. Besides that, the painted markers perform better than the tape markers both in terms of accuracy and precision, while their accuracy could be in the range of 0.05 mm which verifies its potential to be used for measuring cracks in masonry walls or plastered and painted masonry surfaces. The proposed method can be particularly useful for heritage structures, and especially for acute problems like foundation settlement. Another advantage of the method is that it has been designed to be used by non-technical people, so that citizen involvement is also possible in col- lecting data from the field

    Application of augmented reality and robotic technology in broadcasting: A survey

    Get PDF
    As an innovation technique, Augmented Reality (AR) has been gradually deployed in the broadcast, videography and cinematography industries. Virtual graphics generated by AR are dynamic and overlap on the surface of the environment so that the original appearance can be greatly enhanced in comparison with traditional broadcasting. In addition, AR enables broadcasters to interact with augmented virtual 3D models on a broadcasting scene in order to enhance the performance of broadcasting. Recently, advanced robotic technologies have been deployed in a camera shooting system to create a robotic cameraman so that the performance of AR broadcasting could be further improved, which is highlighted in the paper

    Mobile Motion Capture

    Get PDF
    As augmented reality becomes a major research interest in robotics for communicating data, it is increasingly important that its localization challenges be addressed. This project aims to add an alternative tracking and localization solution using the Google Project Tango device. Our goal was to replace the typical motion capture lab with a mobile system that has theoretically infinite capture volume. We accomplished this using various image processing techniques and robotic software tools. After benchmark testing, we showed that our system could track within 3.2 degrees in orientation and 4 cm in position. Finally, we implemented a robotic following application based on this system that also incorporated a pan-tilt turret for the camera, all of which is mounted on a mobile robot

    A comparative study of the sense of presence and anxiety in an invisible marker versus a marker Augmented Reality system for the treatment of phobia towards small animals

    Full text link
    Phobia towards small animals has been treated using exposure in vivo and virtual reality. Recently, augmented reality (AR) has also been presented as a suitable tool. The first AR system developed for this purpose used visible markers for tracking. In this first system, the presence of visible markers warns the user of the appearance of animals. To avoid this warning, this paper presents a second version in which the markers are invisible. First, the technical characteristics of a prototype are described. Second, a comparative study of the sense of presence and anxiety in a non-phobic population using the visible marker-tracking system and the invisible marker-tracking system is presented. Twenty-four participants used the two systems. The participants were asked to rate their anxiety level (from 0 to 10) at 8 different moments. Immediately after their experience, the participants were given the SUS questionnaire to assess their subjective sense of presence. The results indicate that the invisible marker-tracking system induces a similar or higher sense of presence than the visible marker-tracking system, and it also provokes a similar or higher level of anxiety in important steps for therapy. Moreover, 83.33% of the participants reported that they did not have the same sensations/surprise using the two systems, and they scored the advantage of using the invisible marker-tracking system (IMARS) at 5.19 +/- 2.25 (on a scale from 1 to 10). However, if only the group with higher fear levels is considered, 100% of the participants reported that they did not have the same sensations/surprise with the two systems, scoring the advantage of using IMARS at 6.38 +/- 1.60 (on a scale from 1 to 10). (C) 2011 Elsevier Ltd. All rights reserved.Juan, M.; Joele, D. (2011). A comparative study of the sense of presence and anxiety in an invisible marker versus a marker Augmented Reality system for the treatment of phobia towards small animals. International Journal of Human-Computer Studies. 69(6):440-453. doi:10.1016/j.ijhcs.2011.03.00244045369

    Novel invisible markers for monitoring cracks on masonry structures

    Get PDF
    This paper presents a proof of concept for monitoring masonry structures using two different types of markers which are not easily noticeable by human eye but exhibit high reflection when subjected to NIR (near-infrared) wavelength of light. The first type is a retroreflective marker covered by a special tape that is opaque in visible light but translucent in NIR, while the second marker is a paint produced from infrared reflective pigments. The reflection of these markers is captured by a special camera-flash combination and processed using image processing algorithms. A series of experiments were conducted to verify their potential to monitor crack development. It is shown that the difference between the actual crack width and the measured was satisfactorily small. Besides that, the painted markers perform better than the tape markers both in terms of accuracy and precision, while their accuracy could be in the range of 0.05 mm which verifies its potential to be used for measuring cracks in masonry walls or plastered and painted masonry surfaces. The proposed method can be particularly useful for heritage structures, and especially for acute problems like foundation settlement. Another advantage of the method is that it has been designed to be used by non-technical people, so that citizen involvement is also possible in collecting data from the field

    Target Tracking Using Optical Markers for Remote Handling in ITER

    Get PDF
    The thesis focuses on the development of a vision system to be used in the remote handling systems of the International Thermonuclear Experimental Rector - ITER. It presents and discusses a realistic solution to estimate the pose of key operational targets, while taking into account the specific needs and restrictions of the application. The contributions to the state of the art are in two main fronts: 1) the development of optical markers that can withstand the extreme conditions in the environment; 2) the development of a robust marker detection and identification framework that can be effectively applied to different use cases. The markers’ locations and labels are used in computing the pose. In the first part of the work, a retro reflective marker made up ITER compliant materials, particularly, fused silica and stainless steel, is designed. A methodology is proposed to optimize the markers’ performance. Highly distinguishable markers are manufactured and tested. In the second part, a hybrid pipeline is proposed that detects uncoded markers in low resolution images using classical methods and identifies them using a machine learning approach. It is demonstrated that the proposed methodology effectively generalizes to different marker constellations and can successfully detect both retro reflective markers and laser engravings. Lastly, a methodology is developed to evaluate the end-to-end accuracy of the proposed solution using the feedback provided by an industrial robotic arm. Results are evaluated in a realistic test setup for two significantly different use cases. Results show that marker based tracking is a viable solution for the problem at hand and can provide superior performance to the earlier stereo matching based approaches. The developed solutions could be applied to other use cases and applications

    Multimodal Sensing Interface for Haptic Interaction

    Get PDF
    This paper investigates the integration of a multimodal sensing system for exploring limits of vibrato tactile haptic feedback when interacting with 3D representation of real objects. In this study, the spatial locations of the objects are mapped to the work volume of the user using a Kinect sensor. The position of the user’s hand is obtained using the marker-based visual processing. The depth information is used to build a vibrotactile map on a haptic glove enhanced with vibration motors. The users can perceive the location and dimension of remote objects by moving their hand inside a scanning region. A marker detection camera provides the location and orientation of the user’s hand (glove) to map the corresponding tactile message. A preliminary study was conducted to explore how different users can perceive such haptic experiences. Factors such as total number of objects detected, object separation resolution, and dimension-based and shape-based discrimination were evaluated. The preliminary results showed that the localization and counting of objects can be attained with a high degree of success. The users were able to classify groups of objects of different dimensions based on the perceived haptic feedback

    Image-based recognition, 3D localization, and retro-reflectivity evaluation of high-quantity low-cost roadway assets for enhanced condition assessment

    Get PDF
    Systematic condition assessment of high-quantity low-cost roadway assets such as traffic signs, guardrails, and pavement markings requires frequent reporting on location and up-to-date status of these assets. Today, most Departments of Transportation (DOTs) in the US collect data using camera-mounted vehicles to filter, annotate, organize, and present the data necessary for these assessments. However, the cost and complexity of the collection, analysis, and reporting as-is conditions result in sparse and infrequent monitoring. Thus, some of the gains in efficiency are consumed by monitoring costs. This dissertation proposes to improve frequency, detail, and applicability of image-based condition assessment via automating detection, classification, and 3D localization of multiple types of high-quantity low-cost roadway assets using both images collected by the DOTs and online databases such Google Street View Images. To address the new requirements of US Federal Highway Administration (FHWA), a new method is also developed that simulates nighttime visibility of traffic signs from images taken during daytime and measures their retro-reflectivity condition. To initiate detection and classification of high-quantity low-cost roadway assets from street-level images, a number of algorithms are proposed that automatically segment and localize high-level asset categories in 3D. The first set of algorithms focus on the task of detecting and segmenting assets at high-level categories. More specifically, a method based on Semantic Texton Forest classifiers, segments each geo-registered 2D video frame at the pixel-level based on shape, texture, and color. A Structure from Motion (SfM) procedure reconstructs the road and its assets in 3D. Next, a voting scheme assigns the most observed asset category to each point in 3D. The experimental results from application of this method are promising, nevertheless because this method relies on using supervised ground-truth pixel labels for training purposes, scaling it to various types of assets is challenging. To address this issue, a non-parametric image parsing method is proposed that leverages lazy learning scheme for segmentation and recognition of roadway assets. The semi-supervised technique used in the proposed method does not need training and provides ground truth data in a more efficient manner. It is easily scalable to thousands of video frames captured during data collection. Once the high-level asset categories are detected, specific techniques needs to be exploited to detect and classify the assets at a higher level of granularity. To this end, performance of three computer vision algorithms are evaluated for classification of traffic signs in presence of cluttered backgrounds and static and dynamic occlusions. Without making any prior assumptions about the location of traffic signs in 2D, the best performing method uses histograms of oriented gradients and color together with multiple one-vs-all Support Vector Machines, and classifies these assets into warning, regulatory, stop, and yield sign categories. To minimize the reliance on visual data collected by the DOTs and improve frequency and applicability of condition assessment, a new end-to-end procedure is presented that applies the above algorithms and creates comprehensive inventory of traffic signs using Google Street View images. By processing images extracted using Google Street View API and discriminative classification scores from all images that see a sign, the most probable 3D location of each traffic sign is derived and is shown on the Google Earth using a dynamic heat map. A data card containing information about location, type, and condition of each detected traffic sign is also created. Finally, a computer vision-based algorithm is proposed that measures retro-reflectivity of traffic signs during daytime using a vehicle mounted device. The algorithm simulates nighttime visibility of traffic signs from images taken during daytime and measures their retro-reflectivity. The technique is faster, cheaper, and safer compared to the state-of-the-art as it neither requires nighttime operation nor requires manual sign inspection. It also satisfies measurement guidelines set forth by FHWA both in terms of granularity and accuracy. To validate the techniques, new detailed video datasets and their ground-truth were generated from 2.2-mile smart road research facility and two interstate highways in the US. The comprehensive dataset contains over 11,000 annotated U.S. traffic sign images and exhibits large variations in sign pose, scale, background, illumination, and occlusion conditions. The performance of all algorithms were examined using these datasets. For retro-reflectivity measurement of traffic signs, experiments were conducted at different times of day and for different distances. Results were compared with a method recommended by ASTM standards. The experimental results show promise in scalability of these methods to reduce the time and effort required for developing road inventories, especially for those assets such as guardrails and traffic lights that are not typically considered in 2D asset recognition methods and also multiple categories of traffic signs. The applicability of Google Street View Images for inventory management purposes and also the technique for retro-reflectivity measurement during daytime demonstrate strong potential in lowering inspection costs and improving safety in practical applications

    Direct Manipulation Of Virtual Objects

    Get PDF
    Interacting with a Virtual Environment (VE) generally requires the user to correctly perceive the relative position and orientation of virtual objects. For applications requiring interaction in personal space, the user may also need to accurately judge the position of the virtual object relative to that of a real object, for example, a virtual button and the user\u27s real hand. This is difficult since VEs generally only provide a subset of the cues experienced in the real world. Complicating matters further, VEs presented by currently available visual displays may be inaccurate or distorted due to technological limitations. Fundamental physiological and psychological aspects of vision as they pertain to the task of object manipulation were thoroughly reviewed. Other sensory modalities--proprioception, haptics, and audition--and their cross-interactions with each other and with vision are briefly discussed. Visual display technologies, the primary component of any VE, were canvassed and compared. Current applications and research were gathered and categorized by different VE types and object interaction techniques. While object interaction research abounds in the literature, pockets of research gaps remain. Direct, dexterous, manual interaction with virtual objects in Mixed Reality (MR), where the real, seen hand accurately and effectively interacts with virtual objects, has not yet been fully quantified. An experimental test bed was designed to provide the highest accuracy attainable for salient visual cues in personal space. Optical alignment and user calibration were carefully performed. The test bed accommodated the full continuum of VE types and sensory modalities for comprehensive comparison studies. Experimental designs included two sets, each measuring depth perception and object interaction. The first set addressed the extreme end points of the Reality-Virtuality (R-V) continuum--Immersive Virtual Environment (IVE) and Reality Environment (RE). This validated, linked, and extended several previous research findings, using one common test bed and participant pool. The results provided a proven method and solid reference points for further research. The second set of experiments leveraged the first to explore the full R-V spectrum and included additional, relevant sensory modalities. It consisted of two full-factorial experiments providing for rich data and key insights into the effect of each type of environment and each modality on accuracy and timeliness of virtual object interaction. The empirical results clearly showed that mean depth perception error in personal space was less than four millimeters whether the stimuli presented were real, virtual, or mixed. Likewise, mean error for the simple task of pushing a button was less than four millimeters whether the button was real or virtual. Mean task completion time was less than one second. Key to the high accuracy and quick task performance time observed was the correct presentation of the visual cues, including occlusion, stereoscopy, accommodation, and convergence. With performance results already near optimal level with accurate visual cues presented, adding proprioception, audio, and haptic cues did not significantly improve performance. Recommendations for future research include enhancement of the visual display and further experiments with more complex tasks and additional control variables
    corecore