25,817 research outputs found

    Non-linear regression models for Approximate Bayesian Computation

    Full text link
    Approximate Bayesian inference on the basis of summary statistics is well-suited to complex problems for which the likelihood is either mathematically or computationally intractable. However the methods that use rejection suffer from the curse of dimensionality when the number of summary statistics is increased. Here we propose a machine-learning approach to the estimation of the posterior density by introducing two innovations. The new method fits a nonlinear conditional heteroscedastic regression of the parameter on the summary statistics, and then adaptively improves estimation using importance sampling. The new algorithm is compared to the state-of-the-art approximate Bayesian methods, and achieves considerable reduction of the computational burden in two examples of inference in statistical genetics and in a queueing model.Comment: 4 figures; version 3 minor changes; to appear in Statistics and Computin

    Detecting Outliers in Data with Correlated Measures

    Full text link
    Advances in sensor technology have enabled the collection of large-scale datasets. Such datasets can be extremely noisy and often contain a significant amount of outliers that result from sensor malfunction or human operation faults. In order to utilize such data for real-world applications, it is critical to detect outliers so that models built from these datasets will not be skewed by outliers. In this paper, we propose a new outlier detection method that utilizes the correlations in the data (e.g., taxi trip distance vs. trip time). Different from existing outlier detection methods, we build a robust regression model that explicitly models the outliers and detects outliers simultaneously with the model fitting. We validate our approach on real-world datasets against methods specifically designed for each dataset as well as the state of the art outlier detectors. Our outlier detection method achieves better performances, demonstrating the robustness and generality of our method. Last, we report interesting case studies on some outliers that result from atypical events.Comment: 10 page

    A review of domain adaptation without target labels

    Full text link
    Domain adaptation has become a prominent problem setting in machine learning and related fields. This review asks the question: how can a classifier learn from a source domain and generalize to a target domain? We present a categorization of approaches, divided into, what we refer to as, sample-based, feature-based and inference-based methods. Sample-based methods focus on weighting individual observations during training based on their importance to the target domain. Feature-based methods revolve around on mapping, projecting and representing features such that a source classifier performs well on the target domain and inference-based methods incorporate adaptation into the parameter estimation procedure, for instance through constraints on the optimization procedure. Additionally, we review a number of conditions that allow for formulating bounds on the cross-domain generalization error. Our categorization highlights recurring ideas and raises questions important to further research.Comment: 20 pages, 5 figure

    Trimmed Density Ratio Estimation

    Full text link
    Density ratio estimation is a vital tool in both machine learning and statistical community. However, due to the unbounded nature of density ratio, the estimation procedure can be vulnerable to corrupted data points, which often pushes the estimated ratio toward infinity. In this paper, we present a robust estimator which automatically identifies and trims outliers. The proposed estimator has a convex formulation, and the global optimum can be obtained via subgradient descent. We analyze the parameter estimation error of this estimator under high-dimensional settings. Experiments are conducted to verify the effectiveness of the estimator.Comment: Made minor revisions. Restructured the introductory section

    Semi-Supervised Kernel PCA

    Get PDF
    We present three generalisations of Kernel Principal Components Analysis (KPCA) which incorporate knowledge of the class labels of a subset of the data points. The first, MV-KPCA, penalises within class variances similar to Fisher discriminant analysis. The second, LSKPCA is a hybrid of least squares regression and kernel PCA. The final LR-KPCA is an iteratively reweighted version of the previous which achieves a sigmoid loss function on the labeled points. We provide a theoretical risk bound as well as illustrative experiments on real and toy data sets
    • …
    corecore