1,818 research outputs found

    Generalizing backdoors

    Get PDF
    Abstract. A powerful intuition in the design of search methods is that one wants to proactively select variables that simplify the problem instance as much as possible when these variables are assigned values. The notion of “Backdoor ” variables follows this intuition. In this work we generalize Backdoors in such a way to allow more general classes of sub-solvers, both complete and heuristic. In order to do so, Pseudo-Backdoors and Heuristic-Backdoors are formally introduced and then applied firstly to a simple Multiple Knapsack Problem and secondly to a complex combinatorial optimization problem in the area of stochastic inventory control. Our preliminary computational experience shows the effectiveness of these approaches that are able to produce very low run times and — in the case of Heuristic-Backdoors — high quality solutions by employing very simple heuristic rules such as greedy local search strategies.

    Pipelined genetic propagation

    Get PDF
    © 2015 IEEE.Genetic Algorithms (GAs) are a class of numerical and combinatorial optimisers which are especially useful for solving complex non-linear and non-convex problems. However, the required execution time often limits their application to small-scale or latency-insensitive problems, so techniques to increase the computational efficiency of GAs are needed. FPGA-based acceleration has significant potential for speeding up genetic algorithms, but existing FPGA GAs are limited by the generational approaches inherited from software GAs. Many parts of the generational approach do not map well to hardware, such as the large shared population memory and intrinsic loop-carried dependency. To address this problem, this paper proposes a new hardware-oriented approach to GAs, called Pipelined Genetic Propagation (PGP), which is intrinsically distributed and pipelined. PGP represents a GA solver as a graph of loosely coupled genetic operators, which allows the solution to be scaled to the available resources, and also to dynamically change topology at run-time to explore different solution strategies. Experiments show that pipelined genetic propagation is effective in solving seven different applications. Our PGP design is 5 times faster than a recent FPGA-based GA system, and 90 times faster than a CPU-based GA system

    Improving Local Search for Structured SAT Formulas via Unit Propagation Based Construct and Cut Initialization (Short Paper)

    Get PDF
    This work is dedicated to improving local search solvers for the Boolean satisfiability (SAT) problem on structured instances. We propose a construct-and-cut (CnC) algorithm based on unit propagation, which is used to produce initial assignments for local search. We integrate our CnC initialization procedure within several state-of-the-art local search SAT solvers, and obtain the improved solvers. Experiments are carried out with a benchmark encoded from a spectrum repacking project as well as benchmarks encoded from two important mathematical problems namely Boolean Pythagorean Triple and Schur Number Five. The experiments show that the CnC initialization improves the local search solvers, leading to better performance than state-of-the-art SAT solvers based on Conflict Driven Clause Learning (CDCL) solvers

    Proceedings of SAT Competition 2020 : Solver and Benchmark Descriptions

    Get PDF

    Proceedings of SAT Competition 2020 : Solver and Benchmark Descriptions

    Get PDF
    Non peer reviewe

    MaxSAT Evaluation 2021 : Solver and Benchmark Descriptions

    Get PDF
    Non peer reviewe

    Proceedings of SAT Competition 2021 : Solver and Benchmark Descriptions

    Get PDF
    Non peer reviewe
    corecore