1,017 research outputs found

    Abstractions, Analysis Techniques, and Synthesis of Scalable Control Strategies for Robot Swarms

    Get PDF
    Tasks that require parallelism, redundancy, and adaptation to dynamic, possibly hazardous environments can potentially be performed very efficiently and robustly by a swarm robotic system. Such a system would consist of hundreds or thousands of anonymous, resource-constrained robots that operate autonomously, with little to no direct human supervision. The massive parallelism of a swarm would allow it to perform effectively in the event of robot failures, and the simplicity of individual robots facilitates a low unit cost. Key challenges in the development of swarm robotic systems include the accurate prediction of swarm behavior and the design of robot controllers that can be proven to produce a desired macroscopic outcome. The controllers should be scalable, meaning that they ensure system operation regardless of the swarm size. This thesis presents a comprehensive approach to modeling a swarm robotic system, analyzing its performance, and synthesizing scalable control policies that cause the populations of different swarm elements to evolve in a specified way that obeys time and efficiency constraints. The control policies are decentralized, computed a priori, implementable on robots with limited sensing and communication capabilities, and have theoretical guarantees on performance. To facilitate this framework of abstraction and top-down controller synthesis, the swarm is designed to emulate a system of chemically reacting molecules. The majority of this work considers well-mixed systems when there are interaction-dependent task transitions, with some modeling and analysis extensions to spatially inhomogeneous systems. The methodology is applied to the design of a swarm task allocation approach that does not rely on inter-robot communication, a reconfigurable manufacturing system, and a cooperative transport strategy for groups of robots. The third application incorporates observations from a novel experimental study of the mechanics of cooperative retrieval in Aphaenogaster cockerelli ants. The correctness of the abstractions and the correspondence of the evolution of the controlled system to the target behavior are validated with computer simulations. The investigated applications form the building blocks for a versatile swarm system with integrated capabilities that have performance guarantees

    Contextually Aware Intelligent Control Agents for Heterogeneous Swarms

    Full text link
    An emerging challenge in swarm shepherding research is to design effective and efficient artificial intelligence algorithms that maintain a low-computational ceiling while increasing the swarm's abilities to operate in diverse contexts. We propose a methodology to design a context-aware swarm-control intelligent agent. The intelligent control agent (shepherd) first uses swarm metrics to recognise the type of swarm it interacts with to then select a suitable parameterisation from its behavioural library for that particular swarm type. The design principle of our methodology is to increase the situation awareness (i.e. information contents) of the control agent without sacrificing the low-computational cost necessary for efficient swarm control. We demonstrate successful shepherding in both homogeneous and heterogeneous swarms.Comment: 37 pages, 3 figures, 11 table

    NASA SBIR abstracts of 1990 phase 1 projects

    Get PDF
    The research objectives of the 280 projects placed under contract in the National Aeronautics and Space Administration (NASA) 1990 Small Business Innovation Research (SBIR) Phase 1 program are described. The basic document consists of edited, non-proprietary abstracts of the winning proposals submitted by small businesses in response to NASA's 1990 SBIR Phase 1 Program Solicitation. The abstracts are presented under the 15 technical topics within which Phase 1 proposals were solicited. Each project was assigned a sequential identifying number from 001 to 280, in order of its appearance in the body of the report. The document also includes Appendixes to provide additional information about the SBIR program and permit cross-reference in the 1990 Phase 1 projects by company name, location by state, principal investigator, NASA field center responsible for management of each project, and NASA contract number

    Design and development of a hominid robot with local control in its adaptable feet to enhance locomotion capabilities

    Get PDF
    With increasing mechanization of our daily lives, the expectations and demands in robotic systems increase in the general public and in scientists alike. In recent events such as the Deepwater Horizon''-accident or the nuclear disaster at Fukushima, mobile robotic systems were used, e.g., to support local task forces by gaining visual material to allow an analysis of the situation. Especially the Fukushima example shows that the robotic systems not only have to face a variety of different tasks during operation but also have to deal with different demands regarding the robot's mobility characteristics. To be able to cope with future requirements, it seems necessary to develop kinematically complex systems that feature several different operating modes. That is where this thesis comes in: A robotic system is developed, whose morphology is oriented on chimpanzees and which has the possibility due to its electro-mechanical structure and the degrees of freedom in its arms and legs to walk with different gaits in different postures. For the proposed robot, the chimpanzee was chosen as a model, since these animals show a multitude of different gaits in nature. A quadrupedal gait like crawl allows the robot to traverse safely and stable over rough terrain. A change into the humanoid, bipedal posture enables the robot to move in man-made environments. The structures, which are necessary to ensure an effective and stable locomotion in these two poses, e.g., the feet, are presented in more detail within the thesis. This includes the biological model and an abstraction to allow a technical implementation. In addition, biological spines are analyzed and the development of an active, artificial spine for the robotic system is described. These additional degrees of freedom can increase the robot's locomotion and manipulation capabilities and even allow to show movements, which are not possible without a spine. Unfortunately, the benefits of using an artificial spine in robotic systems are nowadays still neglected, due to the increased complexity of system design and control. To be able to control such a kinematically complex system, a multitude of sensors is installed within the robot's structures. By placing evaluation electronics close by, a local and decentralized preprocessing is realized. Due to this preprocessing is it possible to realize behaviors on the lowest level of robot control: in this thesis it is exemplarily demonstrated by a local controller in the robot's lower leg. In addition to the development and evaluation of robot's structures, the functionality of the overall system is analyzed in different environments. This includes the presentation of detailed data to show the advantages and disadvantages of the local controller. The robot can change its posture independently from a quadrupedal into a bipedal stance and the other way around without external assistance. Once the robot stands upright, it is to investigate to what extent the quadrupedal walking pattern and control structures (like the local controller) have to be modified to contribute to the bipedal walking as well

    NASA Tech Briefs, January 2013

    Get PDF
    Topics include: Single-Photon-Sensitive HgCdTe Avalanche Photodiode Detector; Surface-Enhanced Raman Scattering Using Silica Whispering-Gallery Mode Resonators; 3D Hail Size Distribution Interpolation/Extrapolation Algorithm; Color-Changing Sensors for Detecting the Presence of Hypergolic Fuels; Artificial Intelligence Software for Assessing Postural Stability; Transformers: Shape-Changing Space Systems Built with Robotic Textiles; Fibrillar Adhesive for Climbing Robots; Using Pre-Melted Phase Change Material to Keep Payloads in Space Warm for Hours without Power; Development of a Centrifugal Technique for the Microbial Bioburden Analysis of Freon (CFC-11); Microwave Sinterator Freeform Additive Construction System (MS-FACS); DSP/FPGA Design for a High-Speed Programmable S-Band Space Transceiver; On-Chip Power-Combining for High-Power Schottky Diode-Based Frequency Multipliers; FPGA Vision Data Architecture; Memory Circuit Fault Simulator; Ultra-Compact Transputer-Based Controller for High-Level, Multi-Axis Coordination; Regolith Advanced Surface Systems Operations Robot Excavator; Magnetically Actuated Seal; Hybrid Electrostatic/Flextensional Mirror for Lightweight, Large-Aperture, and Cryogenic Space Telescopes; System for Contributing and Discovering Derived Mission and Science Data; Remote Viewer for Maritime Robotics Software; Stackfile Database; Reachability Maps for In Situ Operations; JPL Space Telecommunications Radio System Operating Environment; RFI-SIM: RFI Simulation Package; ION Configuration Editor; Dtest Testing Software; IMPaCT - Integration of Missions, Programs, and Core Technologies; Integrated Systems Health Management (ISHM) Toolkit; Wind-Driven Wireless Networked System of Mobile Sensors for Mars Exploration; In Situ Solid Particle Generator; Analysis of the Effects of Streamwise Lift Distribution on Sonic Boom Signature; Rad-Tolerant, Thermally Stable, High-Speed Fiber-Optic Network for Harsh Environments; Towed Subsurface Optical Communications Buoy; High-Collection-Efficiency Fluorescence Detection Cell; Ultra-Compact, Superconducting Spectrometer-on-a-Chip at Submillimeter Wavelengths; UV Resonant Raman Spectrometer with Multi-Line Laser Excitation; Medicine Delivery Device with Integrated Sterilization and Detection; Ionospheric Simulation System for Satellite Observations and Global Assimilative Model Experiments - ISOGAME; Airborne Tomographic Swath Ice Sounding Processing System; flexplan: Mission Planning System for the Lunar Reconnaissance Orbiter; Estimating Torque Imparted on Spacecraft Using Telemetry; PowderSim: Lagrangian Discrete and Mesh-Free Continuum Simulation Code for Cohesive Soils; Multiple-Frame Detection of Subpixel Targets in Thermal Image Sequences; Metric Learning to Enhance Hyperspectral Image Segmentation; Basic Operational Robotics Instructional System; Sheet Membrane Spacesuit Water Membrane Evaporator; Advanced Materials and Manufacturing for Low-Cost, High-Performance Liquid Rocket Combustion Chambers; Motor Qualification for Long-Duration Mars Missions

    Program and Proceedings: The Nebraska Academy of Sciences 1880-2010

    Get PDF
    PROGRAM FRIDAY, APRIL 23, 2010 REGISTRATION FOR ACADEMY, Lobby of Lecture wing, Olin Hall Aeronautics and Space Science, Session A, Olin 249 Aeronautics and Space Science, Session B, Olin 224 Chemistry and Physics, Section A, Chemistry, Olin A Collegiate Academy, Biology Session A, Olin B Collegiate Academy, Chemistry and Physics, Session A, Olin 324 Biological and Medical Sciences, Session A, Olin 112 Biological and Medical Sciences, Session B, Smith Callen Conference Center Chemistry and Physics, Section B, Physics, Planetarium History and Philosophy of Science, Olin 325 Junior Academy, Judges Check-In, Olin 219 Junior Academy, Senior High REGISTRATION, Olin Hall Lobby NWU Health and Sciences Graduate School Fair, Olin and Smith Curtiss Halls Junior Academy, Senior High Competition, Olin 124, Olin 131 Aeronautics and Space Science, Poster Session, Olin 249 Teaching of Science and Math, Olin 325 MAIBEN MEMORIAL LECTURE, OLIN B Dr. Mark Greip, Vice-Chair, Department of Chemistry, University of Nebraska-Lincoln LUNCH, PATIO ROOM, STORY STUDENT CENTER (pay and carry tray through cafeteria line, or pay at NAS registration desk) Aeronautics Group, Conestoga Room Anthropology, Olin 111 Biological and Medical Sciences, Session C, Olin 112 Biological and Medical Sciences, Session D, Smith Callen Conference Center Chemistry and Physics, Section A, Chemistry, Olin A Chemistry and Physics, Section B, Physics, Planetarium Collegiate Academy, Biology Session A, Olin B Collegiate Academy, Biology Session B, Olin 249 Collegiate Academy, Chemistry and Physics, Session A, Olin 324 Junior Academy, Judges Check-In, Olin 219 Junior Academy, Junior High REGISTRATION, Olin Hall Lobby Junior Academy, Senior High Competition, (Final), Olin 110 Earth Science, Olin 224 Junior Academy, Junior High Competition, Olin 124, Olin 131 NJAS Board/Teacher Meeting, Olin 219 Junior Academy, General Awards Presentations, Smith Callen Conference Center BUSINESS MEETING, OLIN B SOCIAL HOUR for Members, Spouses, and Guests First United Methodist Church, 2723 N 50th Street, Lincoln, NE ANNUAL BANQUET and Presentation of Awards and Scholarships First United Methodist Church, 2723 N 50th Street, Lincoln, N

    Discrete Consensus Decisions in Human-Collective Teams

    Get PDF

    Program and Proceedings: The Nebraska Academy of Sciences 1880-2011

    Get PDF
    PROGRAM FRIDAY, APRIL 15, 2011 REGISTRATION FOR ACADEMY, Lobby of Lecture wing, Olin Hall Aeronautics and Space Science, Session A, Olin 249 Aeronautics and Space Science, Session B, Olin 224 Collegiate Academy, Biology Session A, Olin B Collegiate Academy, Chemistry and Physics, Session A, Olin 324 Chemistry and Physics, Section A, Chemistry, Olin A Biological and Medical Sciences, Session A, Olin 112 Biological and Medical Sciences, Session B, Smith Callen Conference Center Chemistry and Physics, Section B, Physics, Planetarium Junior Academy, Judges Check-In, Olin 219 Junior Academy, Senior High REGISTRATION, Olin Hall Lobby NWU Health and Sciences Graduate School Fair, Olin and Smith Curtiss Halls Junior Academy, Senior High Competition, Olin 124, Olin 131 Teaching of Science and Math, Olin 325 Aeronautics and Space Science, Poster Session, Olin 249 Applied Science and Technology, Olin 325 Aeronautics and Space Science, Poster Session, Olin 249 MAIBEN MEMORIAL LECTURE, OLIN B Dr. Erin Flynn, Nocturnal Manager, Omaha\u27s Henry Doorly Zoo LUNCH, PATIO ROOM, STORY STUDENT CENTER (pay and carry tray through cafeteria line, or pay at NAS registration desk) Aeronautics Group, Conestoga Room Anthropology, Olin 111 Biological and Medical Sciences, Session C, Olin 112 Biological and Medical Sciences, Session D, Smith Callen Conference Center Chemistry and Physics, Section A, Chemistry, Olin A Chemistry and Physics, Section B, Physics, Planetarium Collegiate Academy, Biology Session A, Olin B Collegiate Academy, Biology Session B, Olin 249 Collegiate Academy, Chemistry and Physics, Session B, Olin 324 Collegiate Academy, Chemistry and Physics, Session C, Olin 325 Earth Science, Olin 224 Junior Academy, Judges Check-In, Olin 219 Junior Academy, Junior High REGISTRATION, Olin Hall Lobby Junior Academy, Senior High Competition, (Final), Olin 110 Junior Academy, Junior High Competition, Olin 124, Olin 131 NJAS Board/Teacher Meeting, Olin 219 BUSINESS MEETING, OLIN B AWARDS RECEPTION for NJAS, Scholarships, Members, Spouses, and Guests First United Methodist Church, 2723 N 50th Street, Lincoln, N

    Engineering derivatives from biological systems for advanced aerospace applications

    Get PDF
    The present study consisted of a literature survey, a survey of researchers, and a workshop on bionics. These tasks produced an extensive annotated bibliography of bionics research (282 citations), a directory of bionics researchers, and a workshop report on specific bionics research topics applicable to space technology. These deliverables are included as Appendix A, Appendix B, and Section 5.0, respectively. To provide organization to this highly interdisciplinary field and to serve as a guide for interested researchers, we have also prepared a taxonomy or classification of the various subelements of natural engineering systems. Finally, we have synthesized the results of the various components of this study into a discussion of the most promising opportunities for accelerated research, seeking solutions which apply engineering principles from natural systems to advanced aerospace problems. A discussion of opportunities within the areas of materials, structures, sensors, information processing, robotics, autonomous systems, life support systems, and aeronautics is given. Following the conclusions are six discipline summaries that highlight the potential benefits of research in these areas for NASA's space technology programs
    corecore