30,292 research outputs found

    Coordination of Mobile Mules via Facility Location Strategies

    Full text link
    In this paper, we study the problem of wireless sensor network (WSN) maintenance using mobile entities called mules. The mules are deployed in the area of the WSN in such a way that would minimize the time it takes them to reach a failed sensor and fix it. The mules must constantly optimize their collective deployment to account for occupied mules. The objective is to define the optimal deployment and task allocation strategy for the mules, so that the sensors' downtime and the mules' traveling distance are minimized. Our solutions are inspired by research in the field of computational geometry and the design of our algorithms is based on state of the art approximation algorithms for the classical problem of facility location. Our empirical results demonstrate how cooperation enhances the team's performance, and indicate that a combination of k-Median based deployment with closest-available task allocation provides the best results in terms of minimizing the sensors' downtime but is inefficient in terms of the mules' travel distance. A k-Centroid based deployment produces good results in both criteria.Comment: 12 pages, 6 figures, conferenc

    Sensor Deployment for Network-like Environments

    Full text link
    This paper considers the problem of optimally deploying omnidirectional sensors, with potentially limited sensing radius, in a network-like environment. This model provides a compact and effective description of complex environments as well as a proper representation of road or river networks. We present a two-step procedure based on a discrete-time gradient ascent algorithm to find a local optimum for this problem. The first step performs a coarse optimization where sensors are allowed to move in the plane, to vary their sensing radius and to make use of a reduced model of the environment called collapsed network. It is made up of a finite discrete set of points, barycenters, produced by collapsing network edges. Sensors can be also clustered to reduce the complexity of this phase. The sensors' positions found in the first step are then projected on the network and used in the second finer optimization, where sensors are constrained to move only on the network. The second step can be performed on-line, in a distributed fashion, by sensors moving in the real environment, and can make use of the full network as well as of the collapsed one. The adoption of a less constrained initial optimization has the merit of reducing the negative impact of the presence of a large number of local optima. The effectiveness of the presented procedure is illustrated by a simulated deployment problem in an airport environment

    Supporting development and management of smart office applications: a DYAMAND case study

    Get PDF
    To realize the Internet of Things (IoT) vision, tools are needed to ease the development and deployment of practical applications. Several standard bodies, companies, and ad-hoc consortia are proposing their own solution for inter-device communication. In this context, DYnamic, Adaptive MAnagement of Networks and Devices (DYAMAND) was presented in a previous publication to solve the interoperability issues introduced by the multitude of available technologies. In this paper a DYAMAND case study is presented: in cooperation with a large company, a monitoring application was developed for flexible office spaces in order to reliably reorganize an office environment and give real-time feedback on the usage of meeting rooms. Three wireless sensor technologies were investigated to be used in the pilot. The solution was deployed in a "friendly user" setting at a research institute (iMinds) prior to deployment at the large company's premises. Based on the findings of both installations, requirements for an application platform supporting development and management of smart (office) applications were listed. DYAMAND was used as the basis of the implementation. Although the local management of networked devices as provided by DYAMAND enables easier development of intelligent applications, a number of remote services discussed in this paper are needed to enable reliable and up-to-date support (of new technologies)

    On the use of biased-randomized algorithms for solving non-smooth optimization problems

    Get PDF
    Soft constraints are quite common in real-life applications. For example, in freight transportation, the fleet size can be enlarged by outsourcing part of the distribution service and some deliveries to customers can be postponed as well; in inventory management, it is possible to consider stock-outs generated by unexpected demands; and in manufacturing processes and project management, it is frequent that some deadlines cannot be met due to delays in critical steps of the supply chain. However, capacity-, size-, and time-related limitations are included in many optimization problems as hard constraints, while it would be usually more realistic to consider them as soft ones, i.e., they can be violated to some extent by incurring a penalty cost. Most of the times, this penalty cost will be nonlinear and even noncontinuous, which might transform the objective function into a non-smooth one. Despite its many practical applications, non-smooth optimization problems are quite challenging, especially when the underlying optimization problem is NP-hard in nature. In this paper, we propose the use of biased-randomized algorithms as an effective methodology to cope with NP-hard and non-smooth optimization problems in many practical applications. Biased-randomized algorithms extend constructive heuristics by introducing a nonuniform randomization pattern into them. Hence, they can be used to explore promising areas of the solution space without the limitations of gradient-based approaches, which assume the existence of smooth objective functions. Moreover, biased-randomized algorithms can be easily parallelized, thus employing short computing times while exploring a large number of promising regions. This paper discusses these concepts in detail, reviews existing work in different application areas, and highlights current trends and open research lines

    PhyNetLab: An IoT-Based Warehouse Testbed

    Full text link
    Future warehouses will be made of modular embedded entities with communication ability and energy aware operation attached to the traditional materials handling and warehousing objects. This advancement is mainly to fulfill the flexibility and scalability needs of the emerging warehouses. However, it leads to a new layer of complexity during development and evaluation of such systems due to the multidisciplinarity in logistics, embedded systems, and wireless communications. Although each discipline provides theoretical approaches and simulations for these tasks, many issues are often discovered in a real deployment of the full system. In this paper we introduce PhyNetLab as a real scale warehouse testbed made of cyber physical objects (PhyNodes) developed for this type of application. The presented platform provides a possibility to check the industrial requirement of an IoT-based warehouse in addition to the typical wireless sensor networks tests. We describe the hardware and software components of the nodes in addition to the overall structure of the testbed. Finally, we will demonstrate the advantages of the testbed by evaluating the performance of the ETSI compliant radio channel access procedure for an IoT warehouse

    In-Network Outlier Detection in Wireless Sensor Networks

    Full text link
    To address the problem of unsupervised outlier detection in wireless sensor networks, we develop an approach that (1) is flexible with respect to the outlier definition, (2) computes the result in-network to reduce both bandwidth and energy usage,(3) only uses single hop communication thus permitting very simple node failure detection and message reliability assurance mechanisms (e.g., carrier-sense), and (4) seamlessly accommodates dynamic updates to data. We examine performance using simulation with real sensor data streams. Our results demonstrate that our approach is accurate and imposes a reasonable communication load and level of power consumption.Comment: Extended version of a paper appearing in the Int'l Conference on Distributed Computing Systems 200
    corecore