11,000 research outputs found

    Radiation safety based on the sky shine effect in reactor

    Get PDF
    In the reactor operation, neutrons and gamma rays are the most dominant radiation. As protection, lead and concrete shields are built around the reactor. However, the radiation can penetrate the water shielding inside the reactor pool. This incident leads to the occurrence of sky shine where a physical phenomenon of nuclear radiation sources was transmitted panoramic that extends to the environment. The effect of this phenomenon is caused by the fallout radiation into the surrounding area which causes the radiation dose to increase. High doses of exposure cause a person to have stochastic effects or deterministic effects. Therefore, this study was conducted to measure the radiation dose from sky shine effect that scattered around the reactor at different distances and different height above the reactor platform. In this paper, the analysis of the radiation dose of sky shine effect was measured using the experimental metho

    A case study for NoC based homogeneous MPSoC architectures

    Get PDF
    The many-core design paradigm requires flexible and modular hardware and software components to provide the required scalability to next-generation on-chip multiprocessor architectures. A multidisciplinary approach is necessary to consider all the interactions between the different components of the design. In this paper, a complete design methodology that tackles at once the aspects of system level modeling, hardware architecture, and programming model has been successfully used for the implementation of a multiprocessor network-on-chip (NoC)-based system, the NoCRay graphic accelerator. The design, based on 16 processors, after prototyping with field-programmable gate array (FPGA), has been laid out in 90-nm technology. Post-layout results show very low power, area, as well as 500 MHz of clock frequency. Results show that an array of small and simple processors outperform a single high-end general purpose processo

    On Designing Interconnection Networks for Multiprocessors

    Get PDF
    This paper considers various physical constraints which influence the design of interconnection networks used in multiprocessor systems. Design expressions are presented for implementing an N log N packet passing interconnection network composed for circuit switched crossbar chip modules. Expressions reflecting chip level and board level pin and area constraints are derived and used to determine the network delay expected at a given clock frequency. Logic and memory delay, signal path delay, clock skew and clock tree delay parameters are defined and used to determine the maximum frequency which can be obtained with a given design. An example 2048x2048 network design is considered. This example indicates that using aggressive packaging and MOS technology, a rate of about 32 MHz is achievable. However, this frequency, with this network design, would result in one way delay (ignoring blocking and hot spot delays) of about 1 usecond. A read operation from memory requiring a round trip would thus require more then 2 useconds. This represents more than an order of magnitude slowdown when compared with accessing strictly local memory and appears to be a major problem in the design of network centered multiprocessor architectures

    A multiarchitecture parallel-processing development environment

    Get PDF
    A description is given of the hardware and software of a multiprocessor test bed - the second generation Hypercluster system. The Hypercluster architecture consists of a standard hypercube distributed-memory topology, with multiprocessor shared-memory nodes. By using standard, off-the-shelf hardware, the system can be upgraded to use rapidly improving computer technology. The Hypercluster's multiarchitecture nature makes it suitable for researching parallel algorithms in computational field simulation applications (e.g., computational fluid dynamics). The dedicated test-bed environment of the Hypercluster and its custom-built software allows experiments with various parallel-processing concepts such as message passing algorithms, debugging tools, and computational 'steering'. Such research would be difficult, if not impossible, to achieve on shared, commercial systems

    The Impact of Parallel Processing on Operating Systems

    Get PDF
    The base entity in computer programming is the process or task. The parallelism can be achieved by executing multiple processes on different processors. Distributed systems are managed by distributed operating systems that represent the extension for multiprocessor architectures of multitasking and multiprogramming operating systems.

    Architecture Design Space Exploration for Streaming Applications Through Timing Analysis

    Get PDF
    In this paper we compare the maximum achievable throughput of different memory organisations of the processing elements that constitute a multiprocessor system on chip. This is done by modelling the mapping of a task with input and output channels on a processing element as a homogeneous synchronous dataflow graph, and use maximum cycle mean analysis to derive the throughput. In a HiperLAN2 case study we show how these techniques can be used to derive the required clock frequency and communication latencies in order to meet the application's throughput requirement on a multiprocessor system on chip that has one of the investigated memory organisations
    • …
    corecore