3,703 research outputs found

    Load Balancing in Heterogeneous Cloud Environments by Using PROMETHEE Method

    Get PDF
    Abstract: Efficient Scheduling of tasks in a cloud environment improves resources utilization thereby meeting users' requirements. One of the most important objectives of a scheduling algorithm in cloud environment is a balanced load distribution over various resources for enhancing the overall performance of the cloud. Such a scheduling is complex in nature due to the dynamicity of resources and incoming application specifications. In this paper, we employ PROMETHEE decision making model to design a scheduling algorithm, called PROMETHEE Load Balancing (PLB).This paper formulates the load balancing issue as a multi-criteria decision making problem and aims to achieve well-balanced load across virtual machines for maximizing the overall throughput of the cloud. Extensive simulation results in CloudSim environment show that the proposed algorithm outperforms existing algorithms in terms of load balancing index (LBI), VM load variation, makespan, average execution time and waiting time

    Networking - A Statistical Physics Perspective

    Get PDF
    Efficient networking has a substantial economic and societal impact in a broad range of areas including transportation systems, wired and wireless communications and a range of Internet applications. As transportation and communication networks become increasingly more complex, the ever increasing demand for congestion control, higher traffic capacity, quality of service, robustness and reduced energy consumption require new tools and methods to meet these conflicting requirements. The new methodology should serve for gaining better understanding of the properties of networking systems at the macroscopic level, as well as for the development of new principled optimization and management algorithms at the microscopic level. Methods of statistical physics seem best placed to provide new approaches as they have been developed specifically to deal with non-linear large scale systems. This paper aims at presenting an overview of tools and methods that have been developed within the statistical physics community and that can be readily applied to address the emerging problems in networking. These include diffusion processes, methods from disordered systems and polymer physics, probabilistic inference, which have direct relevance to network routing, file and frequency distribution, the exploration of network structures and vulnerability, and various other practical networking applications.Comment: (Review article) 71 pages, 14 figure

    The cosmological simulation code GADGET-2

    Full text link
    We discuss the cosmological simulation code GADGET-2, a new massively parallel TreeSPH code, capable of following a collisionless fluid with the N-body method, and an ideal gas by means of smoothed particle hydrodynamics (SPH). Our implementation of SPH manifestly conserves energy and entropy in regions free of dissipation, while allowing for fully adaptive smoothing lengths. Gravitational forces are computed with a hierarchical multipole expansion, which can optionally be applied in the form of a TreePM algorithm, where only short-range forces are computed with the `tree'-method while long-range forces are determined with Fourier techniques. Time integration is based on a quasi-symplectic scheme where long-range and short-range forces can be integrated with different timesteps. Individual and adaptive short-range timesteps may also be employed. The domain decomposition used in the parallelisation algorithm is based on a space-filling curve, resulting in high flexibility and tree force errors that do not depend on the way the domains are cut. The code is efficient in terms of memory consumption and required communication bandwidth. It has been used to compute the first cosmological N-body simulation with more than 10^10 dark matter particles, reaching a homogeneous spatial dynamic range of 10^5 per dimension in a 3D box. It has also been used to carry out very large cosmological SPH simulations that account for radiative cooling and star formation, reaching total particle numbers of more than 250 million. We present the algorithms used by the code and discuss their accuracy and performance using a number of test problems. GADGET-2 is publicly released to the research community.Comment: submitted to MNRAS, 31 pages, 20 figures (reduced resolution), code available at http://www.mpa-garching.mpg.de/gadge

    Correlation-based communication in wireless multimedia sensor networks

    Get PDF
    Wireless multimedia sensor networks (WMSNs) are networks of interconnected devices that allow retrieving video and audio streams, still images, and scalar data from the environment. In a densely deployed WMSN, there exists correlation among the observations of camera sensors with overlapped coverage areas, which introduces substantial data redundancy in the network. In this dissertation, efficient communication schemes are designed for WMSNs by leveraging the correlation of visual information observed by camera sensors. First, a spatial correlation model is developed to estimate the correlation of visual information and the joint entropy of multiple correlated camera sensors. The compression performance of correlated visual information is then studied. An entropy-based divergence measure is proposed to predict the compression efficiency of performing joint coding on the images from correlated cameras. Based on the predicted compression efficiency, a clustered coding technique is proposed that maximizes the overall compression gain of the visual information gathered in WMSNs. The correlation of visual information is then utilized to design a network scheduling scheme to maximize the lifetime of WMSNs. Furthermore, as many WMSN applications require QoS support, a correlation-aware QoS routing algorithm is introduced that can efficiently deliver visual information under QoS constraints. Evaluation results show that, by utilizing the correlation of visual information in the communication process, the energy efficiency and networking performance of WMSNs could be improved significantly.PhDCommittee Chair: Akyildiz, Ian; Committee Member: Ammar, Mostafa; Committee Member: Ji, Chuanyi; Committee Member: Li, Ye; Committee Member: Romberg, Justi

    Scaling Expected Force: Efficient Identification of Key Nodes in Network-based Epidemic Models

    Full text link
    Centrality measures are fundamental tools of network analysis as they highlight the key actors within the network. This study focuses on a newly proposed centrality measure, Expected Force (EF), and its use in identifying spreaders in network-based epidemic models. We found that EF effectively predicts the spreading power of nodes and identifies key nodes and immunization targets. However, its high computational cost presents a challenge for its use in large networks. To overcome this limitation, we propose two parallel scalable algorithms for computing EF scores: the first algorithm is based on the original formulation, while the second one focuses on a cluster-centric approach to improve efficiency and scalability. Our implementations significantly reduce computation time, allowing for the detection of key nodes at large scales. Performance analysis on synthetic and real-world networks demonstrates that the GPU implementation of our algorithm can efficiently scale to networks with up to 44 million edges by exploiting modern parallel architectures, achieving speed-ups of up to 300x, and 50x on average, compared to the simple parallel solution
    corecore