13,929 research outputs found

    A linked data approach to publishing complex scientific workflows

    Get PDF
    Past data management practices in many fields of natural science, including climate research, have focused primarily on the final research output - the research publication - with less attention paid to the chain of intermediate data results and their associated metadata, including provenance. Data were often regarded merely as an adjunct to the publication, rather than a scientific resource in their own right. In this paper, we attempt to address the issues of capturing and publishing detailed workflows associated with the climate/research datasets held by the Climatic Research Unit (CRU) at the University of East Anglia. To this end, we present a customisable approach to exposing climate research workflows for the effective re-use of the associated data, through the adoption of linked-data principles, existing widely adopted citation techniques (Digital Object Identifier) and data exchange mechanisms (Open Archives Initiative Object Reuse and Exchange)

    The Evolution of myExperiment

    No full text
    The myExperiment social website for sharing scientific workflows, designed according to Web 2.0 principles, has grown to be the largest public repository of its kind. It is distinctive for its focus on sharing methods, its researcher-centric design and its facility to aggregate content into sharable 'research objects'. This evolution of myExperiment has occurred hand in hand with its users. myExperiment now supports Linked Data as a step toward our vision of the future research environment, which we categorise here as '3rd generation e-Research'

    Three Steps to Heaven: Semantic Publishing in a Real World Workflow

    Full text link
    Semantic publishing offers the promise of computable papers, enriched visualisation and a realisation of the linked data ideal. In reality, however, the publication process contrives to prevent richer semantics while culminating in a `lumpen' PDF. In this paper, we discuss a web-first approach to publication, and describe a three-tiered approach which integrates with the existing authoring tooling. Critically, although it adds limited semantics, it does provide value to all the participants in the process: the author, the reader and the machine.Comment: Published as part of SePublica 201

    Research Objects: Towards Exchange and Reuse of Digital Knowledge

    Get PDF
    What will researchers be publishing in the future? Whilst there is little question that the Web will be the publication platform, as scholars move away from paper towards digital content, there is a need for mechanisms that support the production of self-contained units of knowledge and facilitate the publication, sharing and reuse of such entities.

 In this paper we discuss the notion of _research objects_, semantically rich aggregations of resources, that can possess some scientific intent or support some research objective. We present a number of principles that we expect such objects and their associated services to follow

    The Research Object Suite of Ontologies: Sharing and Exchanging Research Data and Methods on the Open Web

    Get PDF
    Research in life sciences is increasingly being conducted in a digital and online environment. In particular, life scientists have been pioneers in embracing new computational tools to conduct their investigations. To support the sharing of digital objects produced during such research investigations, we have witnessed in the last few years the emergence of specialized repositories, e.g., DataVerse and FigShare. Such repositories provide users with the means to share and publish datasets that were used or generated in research investigations. While these repositories have proven their usefulness, interpreting and reusing evidence for most research results is a challenging task. Additional contextual descriptions are needed to understand how those results were generated and/or the circumstances under which they were concluded. Because of this, scientists are calling for models that go beyond the publication of datasets to systematically capture the life cycle of scientific investigations and provide a single entry point to access the information about the hypothesis investigated, the datasets used, the experiments carried out, the results of the experiments, the people involved in the research, etc. In this paper we present the Research Object (RO) suite of ontologies, which provide a structured container to encapsulate research data and methods along with essential metadata descriptions. Research Objects are portable units that enable the sharing, preservation, interpretation and reuse of research investigation results. The ontologies we present have been designed in the light of requirements that we gathered from life scientists. They have been built upon existing popular vocabularies to facilitate interoperability. Furthermore, we have developed tools to support the creation and sharing of Research Objects, thereby promoting and facilitating their adoption.Comment: 20 page

    Developing Predictive Molecular Maps of Human Disease through Community-based Modeling

    Get PDF
    The failure of biology to identify the molecular causes of disease has led to disappointment in the rate of development of new medicines. By combining the power of community-based modeling with broad access to large datasets on a platform that promotes reproducible analyses we can work towards more predictive molecular maps that can deliver better therapeutics
    • …
    corecore