337 research outputs found

    An Accelerated Decentralized Stochastic Proximal Algorithm for Finite Sums

    Get PDF
    Modern large-scale finite-sum optimization relies on two key aspects: distribution and stochastic updates. For smooth and strongly convex problems, existing decentralized algorithms are slower than modern accelerated variance-reduced stochastic algorithms when run on a single machine, and are therefore not efficient. Centralized algorithms are fast, but their scaling is limited by global aggregation steps that result in communication bottlenecks. In this work, we propose an efficient \textbf{A}ccelerated \textbf{D}ecentralized stochastic algorithm for \textbf{F}inite \textbf{S}ums named ADFS, which uses local stochastic proximal updates and randomized pairwise communications between nodes. On nn machines, ADFS learns from nmnm samples in the same time it takes optimal algorithms to learn from mm samples on one machine. This scaling holds until a critical network size is reached, which depends on communication delays, on the number of samples mm, and on the network topology. We provide a theoretical analysis based on a novel augmented graph approach combined with a precise evaluation of synchronization times and an extension of the accelerated proximal coordinate gradient algorithm to arbitrary sampling. We illustrate the improvement of ADFS over state-of-the-art decentralized approaches with experiments.Comment: Code available in source files. arXiv admin note: substantial text overlap with arXiv:1901.0986

    Regularized Jacobi iteration for decentralized convex optimization with separable constraints

    Full text link
    We consider multi-agent, convex optimization programs subject to separable constraints, where the constraint function of each agent involves only its local decision vector, while the decision vectors of all agents are coupled via a common objective function. We focus on a regularized variant of the so called Jacobi algorithm for decentralized computation in such problems. We first consider the case where the objective function is quadratic, and provide a fixed-point theoretic analysis showing that the algorithm converges to a minimizer of the centralized problem. Moreover, we quantify the potential benefits of such an iterative scheme by comparing it against a scaled projected gradient algorithm. We then consider the general case and show that all limit points of the proposed iteration are optimal solutions of the centralized problem. The efficacy of the proposed algorithm is illustrated by applying it to the problem of optimal charging of electric vehicles, where, as opposed to earlier approaches, we show convergence to an optimal charging scheme for a finite, possibly large, number of vehicles
    • …
    corecore