2,163 research outputs found

    A simple linear time algorithm for the locally connected spanning tree problem on maximal planar chordal graphs

    Get PDF
    A locally connected spanning tree (LCST) T of a graph G is a spanning tree of G such that, for each node, its neighborhood in T induces a connected sub- graph in G. The problem of determining whether a graph contains an LCST or not has been proved to be NP-complete, even if the graph is planar or chordal. The main result of this paper is a simple linear time algorithm that, given a maximal planar chordal graph, determines in linear time whether it contains an LCST or not, and produces one if it exists. We give an anal- ogous result for the case when the input graph is a maximal outerplanar graph

    Generalizations of tournaments: A survey

    Get PDF

    Local Certification of Some Geometric Intersection Graph Classes

    Full text link
    In the context of distributed certification, the recognition of graph classes has started to be intensively studied. For instance, different results related to the recognition of planar, bounded tree-width and HH-minor free graphs have been recently obtained. The goal of the present work is to design compact certificates for the local recognition of relevant geometric intersection graph classes, namely interval, chordal, circular arc, trapezoid and permutation. More precisely, we give proof labeling schemes recognizing each of these classes with logarithmic-sized certificates. We also provide tight logarithmic lower bounds on the size of the certificates on the proof labeling schemes for the recognition of any of the aforementioned geometric intersection graph classes
    • …
    corecore