333,026 research outputs found

    Speaker-independent emotion recognition exploiting a psychologically-inspired binary cascade classification schema

    No full text
    In this paper, a psychologically-inspired binary cascade classification schema is proposed for speech emotion recognition. Performance is enhanced because commonly confused pairs of emotions are distinguishable from one another. Extracted features are related to statistics of pitch, formants, and energy contours, as well as spectrum, cepstrum, perceptual and temporal features, autocorrelation, MPEG-7 descriptors, Fujisakis model parameters, voice quality, jitter, and shimmer. Selected features are fed as input to K nearest neighborhood classifier and to support vector machines. Two kernels are tested for the latter: Linear and Gaussian radial basis function. The recently proposed speaker-independent experimental protocol is tested on the Berlin emotional speech database for each gender separately. The best emotion recognition accuracy, achieved by support vector machines with linear kernel, equals 87.7%, outperforming state-of-the-art approaches. Statistical analysis is first carried out with respect to the classifiers error rates and then to evaluate the information expressed by the classifiers confusion matrices. © Springer Science+Business Media, LLC 2011

    A CASE STUDY ON SUPPORT VECTOR MACHINES VERSUS ARTIFICIAL NEURAL NETWORKS

    Get PDF
    The capability of artificial neural networks for pattern recognition of real world problems is well known. In recent years, the support vector machine has been advocated for its structure risk minimization leading to tolerance margins of decision boundaries. Structures and performances of these pattern classifiers depend on the feature dimension and training data size. The objective of this research is to compare these pattern recognition systems based on a case study. The particular case considered is on classification of hypertensive and normotensive right ventricle (RV) shapes obtained from Magnetic Resonance Image (MRI) sequences. In this case, the feature dimension is reasonable, but the available training data set is small, however, the decision surface is highly nonlinear.For diagnosis of congenital heart defects, especially those associated with pressure and volume overload problems, a reliable pattern classifier for determining right ventricle function is needed. RV¡¦s global and regional surface to volume ratios are assessed from an individual¡¦s MRI heart images. These are used as features for pattern classifiers. We considered first two linear classification methods: the Fisher linear discriminant and the linear classifier trained by the Ho-Kayshap algorithm. When the data are not linearly separable, artificial neural networks with back-propagation training and radial basis function networks were then considered, providing nonlinear decision surfaces. Thirdly, a support vector machine was trained which gives tolerance margins on both sides of the decision surface. We have found in this case study that the back-propagation training of an artificial neural network depends heavily on the selection of initial weights, even though randomized. The support vector machine where radial basis function kernels are used is easily trained and provides decision tolerance margins, in spite of only small margins

    Max-margin Metric Learning for Speaker Recognition

    Full text link
    Probabilistic linear discriminant analysis (PLDA) is a popular normalization approach for the i-vector model, and has delivered state-of-the-art performance in speaker recognition. A potential problem of the PLDA model, however, is that it essentially assumes Gaussian distributions over speaker vectors, which is not always true in practice. Additionally, the objective function is not directly related to the goal of the task, e.g., discriminating true speakers and imposters. In this paper, we propose a max-margin metric learning approach to solve the problems. It learns a linear transform with a criterion that the margin between target and imposter trials are maximized. Experiments conducted on the SRE08 core test show that compared to PLDA, the new approach can obtain comparable or even better performance, though the scoring is simply a cosine computation

    A Unifying Framework in Vector-valued Reproducing Kernel Hilbert Spaces for Manifold Regularization and Co-Regularized Multi-view Learning

    Get PDF
    This paper presents a general vector-valued reproducing kernel Hilbert spaces (RKHS) framework for the problem of learning an unknown functional dependency between a structured input space and a structured output space. Our formulation encompasses both Vector-valued Manifold Regularization and Co-regularized Multi-view Learning, providing in particular a unifying framework linking these two important learning approaches. In the case of the least square loss function, we provide a closed form solution, which is obtained by solving a system of linear equations. In the case of Support Vector Machine (SVM) classification, our formulation generalizes in particular both the binary Laplacian SVM to the multi-class, multi-view settings and the multi-class Simplex Cone SVM to the semi-supervised, multi-view settings. The solution is obtained by solving a single quadratic optimization problem, as in standard SVM, via the Sequential Minimal Optimization (SMO) approach. Empirical results obtained on the task of object recognition, using several challenging datasets, demonstrate the competitiveness of our algorithms compared with other state-of-the-art methods.Comment: 72 page

    Expanding the Family of Grassmannian Kernels: An Embedding Perspective

    Full text link
    Modeling videos and image-sets as linear subspaces has proven beneficial for many visual recognition tasks. However, it also incurs challenges arising from the fact that linear subspaces do not obey Euclidean geometry, but lie on a special type of Riemannian manifolds known as Grassmannian. To leverage the techniques developed for Euclidean spaces (e.g, support vector machines) with subspaces, several recent studies have proposed to embed the Grassmannian into a Hilbert space by making use of a positive definite kernel. Unfortunately, only two Grassmannian kernels are known, none of which -as we will show- is universal, which limits their ability to approximate a target function arbitrarily well. Here, we introduce several positive definite Grassmannian kernels, including universal ones, and demonstrate their superiority over previously-known kernels in various tasks, such as classification, clustering, sparse coding and hashing

    Knots timber detection and classification with C-Support Vector Machine

    Get PDF
    Timber knots recognition is of prime importance to further determine the timber grade. The recognition is normally based on the human expert’s eyes in which can lead to some flaws based on human limitations and weaknesses. The use of X-ray can cause emits radiation and can be dangerous to the workers. This paper addresses the employment of computational methods for knot detection. A pre-processing and feature extraction methods include contrast stretching, median blur and thresholding, gray scale and local binary pattern were used. More than 400 datasets of knot images of the tropical timbers, namely Acacia and Hevea Brasiliensis have been tested using C-support vector machine as a knot classifier. The findings demonstrate different performances for three types of kernel. Linear kernel function outperformed both radial basis function and polynomial kernel functions for Acacia and Hevea Brasiliensis species. Both species classifications using linear kernel have managed to achieve a promising accuracy. Knots classification with the used of support vector machine has shown a promising result to improve the classifier and test with different types of tropical timbers

    Integrated Inference and Learning of Neural Factors in Structural Support Vector Machines

    Get PDF
    Tackling pattern recognition problems in areas such as computer vision, bioinformatics, speech or text recognition is often done best by taking into account task-specific statistical relations between output variables. In structured prediction, this internal structure is used to predict multiple outputs simultaneously, leading to more accurate and coherent predictions. Structural support vector machines (SSVMs) are nonprobabilistic models that optimize a joint input-output function through margin-based learning. Because SSVMs generally disregard the interplay between unary and interaction factors during the training phase, final parameters are suboptimal. Moreover, its factors are often restricted to linear combinations of input features, limiting its generalization power. To improve prediction accuracy, this paper proposes: (i) Joint inference and learning by integration of back-propagation and loss-augmented inference in SSVM subgradient descent; (ii) Extending SSVM factors to neural networks that form highly nonlinear functions of input features. Image segmentation benchmark results demonstrate improvements over conventional SSVM training methods in terms of accuracy, highlighting the feasibility of end-to-end SSVM training with neural factors
    corecore