136 research outputs found

    Discrete conformal maps and ideal hyperbolic polyhedra

    Full text link
    We establish a connection between two previously unrelated topics: a particular discrete version of conformal geometry for triangulated surfaces, and the geometry of ideal polyhedra in hyperbolic three-space. Two triangulated surfaces are considered discretely conformally equivalent if the edge lengths are related by scale factors associated with the vertices. This simple definition leads to a surprisingly rich theory featuring M\"obius invariance, the definition of discrete conformal maps as circumcircle preserving piecewise projective maps, and two variational principles. We show how literally the same theory can be reinterpreted to addresses the problem of constructing an ideal hyperbolic polyhedron with prescribed intrinsic metric. This synthesis enables us to derive a companion theory of discrete conformal maps for hyperbolic triangulations. It also shows how the definitions of discrete conformality considered here are closely related to the established definition of discrete conformality in terms of circle packings.Comment: 62 pages, 22 figures. v2: typos corrected, references added and updated, minor changes in exposition. v3, final version: typos corrected, improved exposition, some material moved to appendice

    Approximation of conformal mappings using conformally equivalent triangular lattices

    Get PDF
    Consider discrete conformal maps defined on the basis of two conformally equivalent triangle meshes, that is edge lengths are related by scale factors associated to the vertices. Given a smooth conformal map ff, we show that it can be approximated by such discrete conformal maps fϵf^\epsilon. In particular, let TT be an infinite regular triangulation of the plane with congruent triangles and only acute angles (i.e.\ <π/2<\pi/2). We scale this tiling by ϵ>0\epsilon>0 and approximate a compact subset of the domain of ff with a portion of it. For ϵ\epsilon small enough we prove that there exists a conformally equivalent triangle mesh whose scale factors are given by logf\log|f'| on the boundary. Furthermore we show that the corresponding discrete conformal maps fϵf^\epsilon converge to ff uniformly in C1C^1 with error of order ϵ\epsilon.Comment: 14 pages, 3 figures; v2 typos corrected, revised introduction, some proofs extende

    Computing Teichm\"{u}ller Maps between Polygons

    Full text link
    By the Riemann-mapping theorem, one can bijectively map the interior of an nn-gon PP to that of another nn-gon QQ conformally. However, (the boundary extension of) this mapping need not necessarily map the vertices of PP to those QQ. In this case, one wants to find the ``best" mapping between these polygons, i.e., one that minimizes the maximum angle distortion (the dilatation) over \textit{all} points in PP. From complex analysis such maps are known to exist and are unique. They are called extremal quasiconformal maps, or Teichm\"{u}ller maps. Although there are many efficient ways to compute or approximate conformal maps, there is currently no such algorithm for extremal quasiconformal maps. This paper studies the problem of computing extremal quasiconformal maps both in the continuous and discrete settings. We provide the first constructive method to obtain the extremal quasiconformal map in the continuous setting. Our construction is via an iterative procedure that is proven to converge quickly to the unique extremal map. To get to within ϵ\epsilon of the dilatation of the extremal map, our method uses O(1/ϵ4)O(1/\epsilon^{4}) iterations. Every step of the iteration involves convex optimization and solving differential equations, and guarantees a decrease in the dilatation. Our method uses a reduction of the polygon mapping problem to that of the punctured sphere problem, thus solving a more general problem. We also discretize our procedure. We provide evidence for the fact that the discrete procedure closely follows the continuous construction and is therefore expected to converge quickly to a good approximation of the extremal quasiconformal map.Comment: 28 pages, 6 figure
    corecore