27,626 research outputs found

    Analysis of nonlinear structures via mode synthesis

    Get PDF
    An effective procedure for NASTRAN was developed that permits any number of substructures of any size to be synthesized for the purpose of developing normal modes of vibration of the complete structural system. The technique is extended to permit modal transient analysis of the subdivided system. This latter procedure permits the use of NASTRAN's ability to include nonlinear forces in the problem. The five-phase process is accomplished using standard NASTRAN rigid formats with problem-independent alter packages and DMAP sequences

    AT-GIS: highly parallel spatial query processing with associative transducers

    Get PDF
    Users in many domains, including urban planning, transportation, and environmental science want to execute analytical queries over continuously updated spatial datasets. Current solutions for largescale spatial query processing either rely on extensions to RDBMS, which entails expensive loading and indexing phases when the data changes, or distributed map/reduce frameworks, running on resource-hungry compute clusters. Both solutions struggle with the sequential bottleneck of parsing complex, hierarchical spatial data formats, which frequently dominates query execution time. Our goal is to fully exploit the parallelism offered by modern multicore CPUs for parsing and query execution, thus providing the performance of a cluster with the resources of a single machine. We describe AT-GIS, a highly-parallel spatial query processing system that scales linearly to a large number of CPU cores. ATGIS integrates the parsing and querying of spatial data using a new computational abstraction called associative transducers(ATs). ATs can form a single data-parallel pipeline for computation without requiring the spatial input data to be split into logically independent blocks. Using ATs, AT-GIS can execute, in parallel, spatial query operators on the raw input data in multiple formats, without any pre-processing. On a single 64-core machine, AT-GIS provides 3× the performance of an 8-node Hadoop cluster with 192 cores for containment queries, and 10× for aggregation queries

    On the Computational Power of DNA Annealing and Ligation

    Get PDF
    In [20] it was shown that the DNA primitives of Separate, Merge, and Amplify were not sufficiently powerful to invert functions defined by circuits in linear time. Dan Boneh et al [4] show that the addition of a ligation primitive, Append, provides the missing power. The question becomes, "How powerful is ligation? Are Separate, Merge, and Amplify necessary at all?" This paper proposes to informally explore the power of annealing and ligation for DNA computation. We conclude, in fact, that annealing and ligation alone are theoretically capable of universal computation

    Image Display and Manipulation System (IDAMS) program documentation, Appendixes A-D

    Get PDF
    The IDAMS Processor is a package of task routines and support software that performs convolution filtering, image expansion, fast Fourier transformation, and other operations on a digital image tape. A unique task control card for that program, together with any necessary parameter cards, selects each processing technique to be applied to the input image. A variable number of tasks can be selected for execution by including the proper task and parameter cards in the input deck. An executive maintains control of the run; it initiates execution of each task in turn and handles any necessary error processing

    Sequential Composition in the Presence of Intermediate Termination (Extended Abstract)

    Get PDF
    The standard operational semantics of the sequential composition operator gives rise to unbounded branching and forgetfulness when transparent process expressions are put in sequence. Due to transparency, the correspondence between context-free and pushdown processes fails modulo bisimilarity, and it is not clear how to specify an always terminating half counter. We propose a revised operational semantics for the sequential composition operator in the context of intermediate termination. With the revised operational semantics, we eliminate transparency, allowing us to establish a close correspondence between context-free processes and pushdown processes. Moreover, we prove the reactive Turing powerfulness of TCP with iteration and nesting with the revised operational semantics for sequential composition.Comment: In Proceedings EXPRESS/SOS 2017, arXiv:1709.00049. arXiv admin note: substantial text overlap with arXiv:1706.0840

    Adaptive Neural Compilation

    Full text link
    This paper proposes an adaptive neural-compilation framework to address the problem of efficient program learning. Traditional code optimisation strategies used in compilers are based on applying pre-specified set of transformations that make the code faster to execute without changing its semantics. In contrast, our work involves adapting programs to make them more efficient while considering correctness only on a target input distribution. Our approach is inspired by the recent works on differentiable representations of programs. We show that it is possible to compile programs written in a low-level language to a differentiable representation. We also show how programs in this representation can be optimised to make them efficient on a target distribution of inputs. Experimental results demonstrate that our approach enables learning specifically-tuned algorithms for given data distributions with a high success rate.Comment: Submitted to NIPS 2016, code and supplementary materials will be available on author's pag
    • …
    corecore