48,000 research outputs found

    A path following algorithm for the graph matching problem

    Get PDF
    We propose a convex-concave programming approach for the labeled weighted graph matching problem. The convex-concave programming formulation is obtained by rewriting the weighted graph matching problem as a least-square problem on the set of permutation matrices and relaxing it to two different optimization problems: a quadratic convex and a quadratic concave optimization problem on the set of doubly stochastic matrices. The concave relaxation has the same global minimum as the initial graph matching problem, but the search for its global minimum is also a hard combinatorial problem. We therefore construct an approximation of the concave problem solution by following a solution path of a convex-concave problem obtained by linear interpolation of the convex and concave formulations, starting from the convex relaxation. This method allows to easily integrate the information on graph label similarities into the optimization problem, and therefore to perform labeled weighted graph matching. The algorithm is compared with some of the best performing graph matching methods on four datasets: simulated graphs, QAPLib, retina vessel images and handwritten chinese characters. In all cases, the results are competitive with the state-of-the-art.Comment: 23 pages, 13 figures,typo correction, new results in sections 4,5,

    A LINEAR-PROGRAMMING APPROACH FOR THE WEIGHTED GRAPH MATCHING PROBLEM

    Get PDF
    A linear programming (LP) approach is proposed for the weighted graph matching problem. A linear program is obtained by formulating the graph matching problem in L1 norm and then transforming the resulting quadratic optimization problem to a linear one. The linear program is solved using a Simplex-based algorithm. Then, approximate 0-1 integer solutions are obtained by applying the Hungarian method on the real solutions of the linear program. The complexity of the proposed algorithm is polynomial time, and it is O(n6 L) for matching graphs of size n. The developed algorithm is compared to two other algorithms. One is based on an eigen decomposition approach and the other on a symmetric polynomial transform. Experimental results showed that the LP approach is superior in matching graphs than both other methods

    Bi-Criteria and Approximation Algorithms for Restricted Matchings

    Full text link
    In this work we study approximation algorithms for the \textit{Bounded Color Matching} problem (a.k.a. Restricted Matching problem) which is defined as follows: given a graph in which each edge ee has a color cec_e and a profit peQ+p_e \in \mathbb{Q}^+, we want to compute a maximum (cardinality or profit) matching in which no more than wjZ+w_j \in \mathbb{Z}^+ edges of color cjc_j are present. This kind of problems, beside the theoretical interest on its own right, emerges in multi-fiber optical networking systems, where we interpret each unique wavelength that can travel through the fiber as a color class and we would like to establish communication between pairs of systems. We study approximation and bi-criteria algorithms for this problem which are based on linear programming techniques and, in particular, on polyhedral characterizations of the natural linear formulation of the problem. In our setting, we allow violations of the bounds wjw_j and we model our problem as a bi-criteria problem: we have two objectives to optimize namely (a) to maximize the profit (maximum matching) while (b) minimizing the violation of the color bounds. We prove how we can "beat" the integrality gap of the natural linear programming formulation of the problem by allowing only a slight violation of the color bounds. In particular, our main result is \textit{constant} approximation bounds for both criteria of the corresponding bi-criteria optimization problem

    The matching relaxation for a class of generalized set partitioning problems

    Full text link
    This paper introduces a discrete relaxation for the class of combinatorial optimization problems which can be described by a set partitioning formulation under packing constraints. We present two combinatorial relaxations based on computing maximum weighted matchings in suitable graphs. Besides providing dual bounds, the relaxations are also used on a variable reduction technique and a matheuristic. We show how that general method can be tailored to sample applications, and also perform a successful computational evaluation with benchmark instances of a problem in maritime logistics.Comment: 33 pages. A preliminary (4-page) version of this paper was presented at CTW 2016 (Cologne-Twente Workshop on Graphs and Combinatorial Optimization), with proceedings on Electronic Notes in Discrete Mathematic
    corecore