2,814 research outputs found

    MIMO Assisted Space-Code-Division Multiple-Access: Linear Detectors and Performance over Multipath Fading Channels

    No full text
    In this contribution we propose and investigate a multiple-input multiple-output space-division, code-division multiple-access (MIMO SCDMA) scheme. The main objective is to improve the capacity of the existing DS-CDMA systems, for example, for supporting an increased number of users, by deploying multiple transmit and receive antennas in the corresponding systems and by using some advanced transmission and detection algorithms. In the proposed MIMO SCDMA system, each user can be distinguished jointly by its spreading code-signature and its unique channel impulse response (CIR) transfer function referred to as spatial-signature. Hence, the number of users might be supported by the MIMO SCDMA system and the corresponding achievable performance are determined by the degrees of freedom provided by both the code-signatures and the spatial-signatures, as well as by how efficiently the degrees of freedom are exploited. Specifically, the number of users supported by the proposed MIMO SCDMA can be significantly higher than the number of chips per bit, owing to the employment of space-division. In this contribution space-time spreading (STS) is employed for configuring the transmitted signals. Three types of low-complexity linear detectors, namely correlation, decorrelating and minimum mean-square error (MMSE), are considered for detecting the MIMO SCDMA signals. The BER performance of the MIMO SCDMA system associated with these linear detectors are evaluated by simulations, when assuming that the MIMO SCDMA signals are transmitted over multipath Rayleigh fading channels. Our study and simulation results show that MIMO SCDMA assisted by multiuser detection is capable of facilitating joint space-time de-spreading, multipath combining and receiver diversity combining, while simultaneously suppressing the multiuser interfering signals

    Performance of Hybrid Direct-Sequence Time-Hopping Ultrawide Bandwidth Systems over Nakagami-m Fading Channels

    No full text
    This paper investigates and compares the performance of various ultrawide bandwidth (UWB) systems when communicating over Nakagami-m fading channels. Specifically, the direct-sequence (DS), time-hopping (TH) and hybrid direct-sequence time-hopping (DS-TH) UWB systems are considered. The performance of these UWB systems is studied associated with employing the conventional single-user correlation detector or minimum mean-square error (MMSE) multiuser detector. Our simulation results show that the hybrid DS-TH UWB system may outperform a corresponding pure TH-UWB or pure DS-UWB system in terms of the achievable error performance. Given the total spreading gain of the hybrid DS-TH UWB system, there is an optimal setting of the TH spreading factor and DS spreading factor, which results in the best error performance

    Uplink Multiuser MIMO Detection Scheme with Reduced Computational Complexity

    Get PDF
    The wireless communication systems with multiple antennas have recently received significant attention due to their higher capacity and better immunity to fading channels as compared to single antenna systems. A fast antenna selection scheme has been introduced for the uplink multiuser multiple-input multiple-output (MIMO) detection to achieve diversity gains, but the computational complexity of the fast antenna selection scheme in multiuser systems is very high due to repetitive pseudo-inversion computations. In this paper, a new uplink multiuser detection scheme is proposed adopting a switch-and-examine combining (SEC) scheme and the Cholesky decomposition to solve the computational complexity problem. K users are considered that each users is equipped with two transmit antennas for Alamouti space-time block code (STBC) over wireless Rayleigh fading channels. Simulation results show that the computational complexity of the proposed scheme is much lower than the systems with exhaustive and fast antenna selection, while the proposed scheme does not experience the degradations of bit error rate (BER) performances

    A Linear Multi-User Detector for STBC MC-CDMA Systems based on the Adaptive Implementation of the Minimum-Conditional Bit-Error-Rate Criterion and on Genetic Algorithm-assisted MMSE Channel Estimation

    Get PDF
    The implementation of efficient baseband receivers characterized by affordable computational load is a crucial point in the development of transmission systems exploiting diversity in different domains. In this paper, we are proposing a linear multi-user detector for MIMO MC-CDMA systems with Alamouti’s Space-Time Block Coding, inspired by the concept of Minimum Conditional Bit-Error-Rate (MCBER) and relying on Genetic-Algorithm (GA)-assisted MMSE channel estimation. The MCBER combiner has been implemented in adaptive way by using Least-Mean-Square (LMS) optimization. Firstly, we shall analyze the proposed adaptive MCBER MUD receiver with ideal knowledge of Channel Status Information (CSI). Afterwards, we shall consider the complete receiver structure, encompassing also the non-ideal GA-assisted channel estimation. Simulation results evidenced that the proposed MCBER receiver always outperforms state-of-the-art receiver schemes based on EGC and MMSE criterion exploiting the same degree of channel knowledge (i.e. ideal or estimated CSI)

    Multiuser Detection with Decision-Feedback Detectors and PIC in MC-CDMA System

    Get PDF
    In this paper we propose an iterative parallel decision feedback (P-DF) receivers associated with parallel interference cancellation (PIC) for multicarrier code division multiple access (MC-CDMA) systems in a Rayleigh fading channel (cost 207). First the most widely detection techniques, minimum mean-squared error MMSE, Maximum Likelihood ML and PIC were investigated in order to compare their performances in terms of Bit Error Rate (BER) with parallel feedback detection P-DFD. A MMSE DF detector that employs parallel decision-feedback (MMSE-P-DFD) is considered and shows almost the same BER performance with MMSE and ML, which present a better result than the other techniques. In a second time, an iterative proposed method based on the multi-stage techniques P-DFD (parallel DFD with two stages) and PIC was exploited to improve the performance of the system

    Near-Instantaneously Adaptive HSDPA-Style OFDM Versus MC-CDMA Transceivers for WIFI, WIMAX, and Next-Generation Cellular Systems

    No full text
    Burts-by-burst (BbB) adaptive high-speed downlink packet access (HSDPA) style multicarrier systems are reviewed, identifying their most critical design aspects. These systems exhibit numerous attractive features, rendering them eminently eligible for employment in next-generation wireless systems. It is argued that BbB-adaptive or symbol-by-symbol adaptive orthogonal frequency division multiplex (OFDM) modems counteract the near instantaneous channel quality variations and hence attain an increased throughput or robustness in comparison to their fixed-mode counterparts. Although they act quite differently, various diversity techniques, such as Rake receivers and space-time block coding (STBC) are also capable of mitigating the channel quality variations in their effort to reduce the bit error ratio (BER), provided that the individual antenna elements experience independent fading. By contrast, in the presence of correlated fading imposed by shadowing or time-variant multiuser interference, the benefits of space-time coding erode and it is unrealistic to expect that a fixed-mode space-time coded system remains capable of maintaining a near-constant BER

    Multiuser Detection Assisted Time- and Frequency-Domain Spread Multicarrier Code-Division Multiple-Access

    No full text
    In this contribution, we study a reduced-complexity multiuser detection aided multicarrier direct-sequence code-division multiple-access (MC DS-CDMA) scheme, which employs both time (T)-domain and frequency (F)-domain spreading. We investigate the achievable detection performance in the context of synchronous TF-domain spread MC DS-CDMA when communicating over an additive white Gaussian noise (AWGN) channel. Five detection schemes are investigated, which include the single-user correlation based detector, the joint TF-domain decorrelating multiuser detector (MUD), the joint TF-domain MMSEMUD, the separate TF-domain decorrelating/MMSE MUD, and the separate TF-domain MMSE/decorrelating MUD. Our simulation results show that the separate TF-domain MUD schemes are capable of achieving a similar bit error rate (BER) performance to that of the significantly more complex joint TF-domain MUD schemes. Index Terms—Code-division multiple-access (CDMA), decorrelating, frequency-domain spreading, joint detection, minimum mean square error (MMSE), multicarrier (MC), multiuser detection, separate detection, time-domain spreading
    • 

    corecore