173 research outputs found

    A linear filter to reconstruct the ISW effect from CMB and LSS observations

    Full text link
    The extraction of a signal from some observational data sets that contain different contaminant emissions, often at a greater level than the signal itself, is a common problem in Astrophysics and Cosmology. The signal can be recovered, for instance, using a simple Wiener filter. However, in certain cases, additional information may also be available, such as a second observation which correlates to a certain level with the sought signal. In order to improve the quality of the reconstruction, it would be useful to include as well this additional information. Under these circumstances, we have constructed a linear filter, the linear covariance-based filter, that extracts the signal from the data but takes also into account the correlation with the second observation. To illustrate the performance of the method, we present a simple application to reconstruct the so-called Integrated Sachs-Wolfe effect from simulated observations of the Cosmic Microwave Background and of catalogues of galaxies.Comment: 8 pages, 6 figures, accepted for publication in the IEEE Journal of Selected Topics in Signal Processin

    On the recovery of ISW fluctuations using large-scale structure tracers and CMB temperature and polarization anisotropies

    Get PDF
    In this work we present a method to extract the signal induced by the integrated Sachs-Wolfe (ISW) effect in the cosmic microwave background (CMB). It makes use of the Linear Covariance-Based filter introduced by Barreiro et al., and combines CMB data with any number of large-scale structure (LSS) surveys and lensing information. It also exploits CMB polarization to reduce cosmic variance. The performance of the method has been thoroughly tested with simulations taking into account the impact of non-ideal conditions such as incomplete sky coverage or the presence of noise. In particular, three galaxy surveys are simulated, whose redshift distributions peak at low (z≃0.3z \simeq 0.3), intermediate (z≃0.6z \simeq 0.6) and high redshift (z≃0.9z \simeq 0.9). The contribution of each of the considered data sets as well as the effect of a mask and noise in the reconstructed ISW map is studied in detail. When combining all the considered data sets (CMB temperature and polarization, the three galaxy surveys and the lensing map), the proposed filter successfully reconstructs a map of the weak ISW signal, finding a perfect correlation with the input signal for the ideal case and around 80 per cent, on average, in the presence of noise and incomplete sky coverage. We find that including CMB polarization improves the correlation between input and reconstruction although only at a small level. Nonetheless, given the weakness of the ISW signal, even modest improvements can be of importance. In particular, in realistic situations, in which less information is available from the LSS tracers, the effect of including polarisation is larger. For instance, for the case in which the ISW signal is recovered from CMB plus only one survey, and taking into account the presence of noise and incomplete sky coverage, the improvement in the correlation coefficient can be as large as 10 per cent.Comment: 17 pages, 15 figures, accepted for publication in MNRA

    Integrated Sachs-Wolfe map recovery from NVSS and WMAP 7yr data

    Get PDF
    We present a map of the Cosmic Microwave Background (CMB) anisotropies induced by the late Integrated Sachs Wolfe effect. The map is constructed by combining the information of the WMAP 7-yr CMB data and the NRAO VLA Sky Survey (NVSS) through a linear filter. This combination improves the quality of the map that would be obtained using information only from the Large Scale Structure data. In order to apply the filter, a given cosmological model needs to be assumed. In particular, we consider the standard LCDM model. As a test of consistency, we show that the reconstructed map is in agreemet with the assumed model, which is also favoured against a scenario where no correlation between the CMB and NVSS catalogue is considered.Comment: 6 pages, 4 figures. Minor revision, accepted for publication in MNRA

    A Bayesian estimate of the CMB-large-scale structure cross-correlation

    Full text link
    Evidences for late-time acceleration of the Universe are provided by multiple probes, such as Type Ia supernovae, the cosmic microwave background (CMB) and large-scale structure (LSS). In this work, we focus on the integrated Sachs--Wolfe (ISW) effect, i.e., secondary CMB fluctuations generated by evolving gravitational potentials due to the transition between, e.g., the matter and dark energy (DE) dominated phases. Therefore, assuming a flat universe, DE properties can be inferred from ISW detections. We present a Bayesian approach to compute the CMB--LSS cross-correlation signal. The method is based on the estimate of the likelihood for measuring a combined set consisting of a CMB temperature and a galaxy contrast maps, provided that we have some information on the statistical properties of the fluctuations affecting these maps. The likelihood is estimated by a sampling algorithm, therefore avoiding the computationally demanding techniques of direct evaluation in either pixel or harmonic space. As local tracers of the matter distribution at large scales, we used the Two Micron All Sky Survey (2MASS) galaxy catalog and, for the CMB temperature fluctuations, the ninth-year data release of the Wilkinson Microwave Anisotropy Probe (WMAP9). The results show a dominance of cosmic variance over the weak recovered signal, due mainly to the shallowness of the catalog used, with systematics associated with the sampling algorithm playing a secondary role as sources of uncertainty. When combined with other complementary probes, the method presented in this paper is expected to be a useful tool to late-time acceleration studies in cosmology.Comment: 21 pages, 15 figures, 4 tables. We extended the previous analyses including WMAP9 Q, V and W channels, besides the ILC map. Updated to match accepted ApJ versio

    On the signature of z∼0.6z\sim 0.6 superclusters and voids in the Integrated Sachs-Wolfe effect

    Full text link
    Through a large ensemble of Gaussian realisations and a suite of large-volume N-body simulations, we show that in a standard LCDM scenario, supervoids and superclusters in the redshift range z∈[0.4,0.7]z\in[0.4,0.7] should leave a {\em small} signature on the ISW effect of the order ∼2μ\sim 2 \muK. We perform aperture photometry on WMAP data, centred on such superstructures identified from SDSS LRGs, and find amplitudes at the level of 8 -- 11μ \muK -- thus confirming the earlier work of Granett et al 2008. If we focus on apertures of the size \sim3.6\degr, then our realisations indicate that LCDM is discrepant at the level of ∼4σ\sim4 \sigma. If we combine all aperture scales considered, ranging from 1\degr--20\degr, then the discrepancy becomes ∼2σ\sim2\sigma, and it further lowers to ∼0.6σ\sim 0.6 \sigma if only 30 superstructures are considered in the analysis (being compatible with no ISW signatures at 1.3σ1.3\sigma in this case). Full-sky ISW maps generated from our N-body simulations show that this discrepancy cannot be alleviated by appealing to Rees-Sciama mechanisms, since their impact on the scales probed by our filters is negligible. We perform a series of tests on the WMAP data for systematics. We check for foreground contaminants and show that the signal does not display the correct dependence on the aperture size expected for a residual foreground tracing the density field. The signal also proves robust against rotation tests of the CMB maps, and seems to be spatially associated to the angular positions of the supervoids and superclusters. We explore whether the signal can be explained by the presence of primordial non-Gaussianities of the local type. We show that for models with \FNL=\pm100, whilst there is a change in the pattern of temperature anisotropies, all amplitude shifts are well below <1μ<1\muK.Comment: 14 pages, 9 figures, matches accepted version in MNRA

    The significance of the integrated Sachs-Wolfe effect revisited

    Full text link
    We revisit the state of the integrated Sachs-Wolfe (ISW) effect measurements in light of newly available data and address criticisms about the measurements which have recently been raised. We update the data set previously assembled by Giannantonio et al. to include new data releases for both the cosmic microwave background (CMB) and the large-scale structure (LSS) of the Universe. We find that our updated results are consistent with previous measurements. By fitting a single template amplitude, we now obtain a combined significance of the ISW detection at the 4.4 sigma level, which fluctuates by 0.4 sigma when alternative data cuts and analysis assumptions are considered. We also make new tests for systematic contaminations of the data, focusing in particular on the issues raised by Sawangwit et al. Amongst them, we address the rotation test, which aims at checking for possible systematics by correlating pairs of randomly rotated maps. We find results consistent with the expected data covariance, no evidence for enhanced correlation on any preferred axis of rotation, and therefore no indication of any additional systematic contamination. We publicly release the results, the covariance matrix, and the sky maps used to obtain them.Comment: 19 pages, 10 figures. MNRAS in pres

    A Theory of a Spot

    Full text link
    We present a simple inflationary scenario that can produce arbitrarily large spherical underdense or overdense regions embedded in a standard Lambda cold dark matter paradigm, which we refer to as bubbles. We analyze the effect such bubbles would have on the Cosmic Microwave Background (CMB). For super-horizon sized bubble in the vicinity of the last scattering surface, a signal is imprinted onto CMB via a combination of Sach-Wolfe and an early integrated Sach-Wolfe (ISW) effects. Smaller, sub-horizon sized bubbles at lower redshifts (during matter domination and later) can imprint secondary anisotropies on the CMB via Rees-Sciama, late-time ISW and Ostriker-Vishniac effects. Our scenario, and arguably most similar inflationary models, produce bubbles which are over/underdense in potential: in density such bubbles are characterized by having a distinct wall with the interior staying at the cosmic mean density. We show that such models can potentially, with only moderate fine tuning, explain the \emph{cold spot}, a non-Gaussian feature identified in the Wilkinson Microwave Anisotropy Probe (WMAP) data by several authors. However, more detailed comparisons with current and future CMB data are necessary to confirm (or rule out) this scenario.Comment: 19 pages, 19 figures, added references and explanations, JCAP in pres
    • …
    corecore