2,528 research outputs found

    A Line-Search Algorithm Inspired by the Adaptive Cubic Regularization Framework and Complexity Analysis

    Get PDF
    Adaptive regularized framework using cubics has emerged as an alternative to line-search and trust-region algorithms for smooth nonconvex optimization, with an optimal complexity amongst second-order methods. In this paper, we propose and analyze the use of an iteration dependent scaled norm in the adaptive regularized framework using cubics. Within such scaled norm, the obtained method behaves as a line-search algorithm along the quasi- Newton direction with a special backtracking strategy. Under appropriate assumptions, the new algorithm enjoys the same convergence and complexity properties as adaptive regularized algorithm using cubics. The complexity for finding an approximate first-order stationary point can be improved to be optimal whenever a second order version of the proposed algorithm is regarded. In a similar way, using the same scaled norm to define the trust-region neighborhood, we show that the trust-region algorithm behaves as a line-search algorithm. The good potential of the obtained algorithms is shown on a set of large scale optimization problems

    Adaptive Regularization Algorithms with Inexact Evaluations for Nonconvex Optimization

    Get PDF
    A regularization algorithm using inexact function values and inexact derivatives is proposed and its evaluation complexity analyzed. This algorithm is applicable to unconstrained problems and to problems with inexpensive constraints (that is constraints whose evaluation and enforcement has negligible cost) under the assumption that the derivative of highest degree is β\beta-H\"{o}lder continuous. It features a very flexible adaptive mechanism for determining the inexactness which is allowed, at each iteration, when computing objective function values and derivatives. The complexity analysis covers arbitrary optimality order and arbitrary degree of available approximate derivatives. It extends results of Cartis, Gould and Toint (2018) on the evaluation complexity to the inexact case: if a qqth order minimizer is sought using approximations to the first pp derivatives, it is proved that a suitable approximate minimizer within ϵ\epsilon is computed by the proposed algorithm in at most O(ϵp+βpq+β)O(\epsilon^{-\frac{p+\beta}{p-q+\beta}}) iterations and at most O(log(ϵ)ϵp+βpq+β)O(|\log(\epsilon)|\epsilon^{-\frac{p+\beta}{p-q+\beta}}) approximate evaluations. An algorithmic variant, although more rigid in practice, can be proved to find such an approximate minimizer in O(log(ϵ)+ϵp+βpq+β)O(|\log(\epsilon)|+\epsilon^{-\frac{p+\beta}{p-q+\beta}}) evaluations.While the proposed framework remains so far conceptual for high degrees and orders, it is shown to yield simple and computationally realistic inexact methods when specialized to the unconstrained and bound-constrained first- and second-order cases. The deterministic complexity results are finally extended to the stochastic context, yielding adaptive sample-size rules for subsampling methods typical of machine learning.Comment: 32 page

    A Generic Approach for Escaping Saddle points

    Full text link
    A central challenge to using first-order methods for optimizing nonconvex problems is the presence of saddle points. First-order methods often get stuck at saddle points, greatly deteriorating their performance. Typically, to escape from saddles one has to use second-order methods. However, most works on second-order methods rely extensively on expensive Hessian-based computations, making them impractical in large-scale settings. To tackle this challenge, we introduce a generic framework that minimizes Hessian based computations while at the same time provably converging to second-order critical points. Our framework carefully alternates between a first-order and a second-order subroutine, using the latter only close to saddle points, and yields convergence results competitive to the state-of-the-art. Empirical results suggest that our strategy also enjoys a good practical performance

    A Subsampling Line-Search Method with Second-Order Results

    Full text link
    In many contemporary optimization problems such as those arising in machine learning, it can be computationally challenging or even infeasible to evaluate an entire function or its derivatives. This motivates the use of stochastic algorithms that sample problem data, which can jeopardize the guarantees obtained through classical globalization techniques in optimization such as a trust region or a line search. Using subsampled function values is particularly challenging for the latter strategy, which relies upon multiple evaluations. On top of that all, there has been an increasing interest for nonconvex formulations of data-related problems, such as training deep learning models. For such instances, one aims at developing methods that converge to second-order stationary points quickly, i.e., escape saddle points efficiently. This is particularly delicate to ensure when one only accesses subsampled approximations of the objective and its derivatives. In this paper, we describe a stochastic algorithm based on negative curvature and Newton-type directions that are computed for a subsampling model of the objective. A line-search technique is used to enforce suitable decrease for this model, and for a sufficiently large sample, a similar amount of reduction holds for the true objective. By using probabilistic reasoning, we can then obtain worst-case complexity guarantees for our framework, leading us to discuss appropriate notions of stationarity in a subsampling context. Our analysis encompasses the deterministic regime, and allows us to identify sampling requirements for second-order line-search paradigms. As we illustrate through real data experiments, these worst-case estimates need not be satisfied for our method to be competitive with first-order strategies in practice
    corecore