7 research outputs found

    KANSA: high interoperability e-KTP decentralised database network using distributed hash table

    Get PDF
    e-KTP is an Indonesian Identity Card based on Near Field Communicator technology. This technology was embedded in every e-KTP card for every Indonesian citizen. Until this research, e-KTP technology never to be utilized by any stack-holder neither government agencies nor nongovernment organization or company. e-KTP Technology inside the card never been used and go with conventional with manual copy it with photocopy machine or take a photograph with it. This research was proposing an open standard to utilized e-KTP Technology. The open standard will bring e-KTP technology used as is and used broadly in many government agencies or much commercial company. This research was proposing decentralized network model especially for storing e-KTP data without breaking privacy law. Besides providing high specs of the server, a decentralized model can reduce the cost of server infrastructure. The model was proposing using Distributed Hast Table which was used for peer-to-peer networks. The decentralized model promised high availability and the more secure way to save and access the data. The result of this model can be implemented in many network topology or infrastructure also applicable to implement on Small Medium Enterprise Company

    Public key cryptography in resource-constrained WSN

    Get PDF
    In this paper we present a detailed review of the works on public key cryptography (PKC) in wireless sensor networks (WSNs). In the early days of sensor networks, public key cryptography was thought to be completely unfeasible considering its computational complexity and energy requirements. By this time, several works have proved that the lightweight versions of many well-known public key algorithms can be utilized in WSN environment. With the expense of a little energy, public key based schemes could in fact be the best choice for ensuring data security in high-security demanding WSN applications. Here, we talk about the notion of public key cryptography in WSN, its applicability, challenges in its implementation, and present a detailed study of the significant works on PKC in WSN

    Compact-LWE: Enabling Practically Lightweight Public Key Encryption for Leveled IoT Device Authentication

    Get PDF
    Leveled authentication allows resource-constrained IoT devices to be authenticated at different strength levels according to the particular types of communication. To achieve efficient leveled authentication, we propose a lightweight public key encryption scheme that can produce very short ciphertexts without sacrificing its security. The security of our scheme is based on the Learning With Secretly Scaled Errors in Dense Lattice (referred to as Compact-LWE) problem. We prove the hardness of Compact-LWE by reducing Learning With Errors (LWE) to Compact-LWE. However, unlike LWE, even if the closest vector problem (CVP) in lattices can be solved, Compact-LWE is still hard, due to the high density of lattices constructed from Compact-LWE samples and the relatively longer error vectors. By using a lattice-based attack tool, we verify that the attacks, which are successful on LWE instantly, cannot succeed on Compact-LWE, even for a small dimension parameter like n=13n=13, hence allowing small dimensions for short ciphertexts. On the Contiki operating system for IoT, we have implemented our scheme, with which a leveled Needham-Schroeder-Lowe public key authentication protocol is implemented. On a small IoT device with 8MHZ MSP430 16-bit processor and 10KB RAM, our experiment shows that our scheme can complete 50 encryptions and 500 decryptions per second at a security level above 128 bits, with a public key of 2368 bits, generating 176-bit ciphertexts for 16-bit messages. With two small IoT devices communicating over IEEE 802.15.4 and 6LoWPAN, the total time of completing an authentication varies from 640ms (the 1st authentication level) to 8373ms (the 16th authentication level), in which the execution of our encryption scheme takes only a very small faction from 46ms to 445ms

    A Flexible Ultralight Hardware Security Module for EPC RFID Tags

    Get PDF
    Due to the rapid growth of using Internet of Things (IoT) devices in daily life, the need to achieve an acceptable level of security and privacy for these devices is rising. Security risks may include privacy threats like gaining sensitive information from a device, and authentication problems from counterfeit or cloned devices. It is more challenging to add security features to extremely constrained devices, such as passive Electronic Product Code (EPC) Radio Frequency Identification (RFID) tags, compared to devices that have more computational and storage capabilities. EPC RFID tags are simple and low-cost electronic circuits that are commonly used in supply chains, retail stores, and other applications to identify physical objects. Most tags today are simple "license plates" that just identify the object they are attached to and have minimal security. Due to the security risks of new applications, there is an important need to implement secure RFID tags. Examples of the security risks for these applications include unauthorized physical tracking and inventorying of tags. The current commercial RFID tag designs use specialised hardware circuits approach. This approach can achieve the lowest area and power consumption; however, it lacks flexibility. This thesis presents an optimized application-specific instruction set architecture (ISA) for an ultralight Hardware Security Module (HSM). HSMs are computing devices that protect cryptographic keys and operations for a device. The HSM combines all security-related functions for passive RFID tag. The goal of this research is to demonstrate that using an application-specific instruction set processor (ASIP) architecture for ultralight HSMs provides benefits in terms of trade-offs between flexibility, extensibility, and efficiency. Our novel application specific instruction-set architecture allows flexibility on many design levels and achieves acceptable security level for passive EPC RFID tag. Our solution moves a major design effort from hardware to software, which largely reduces the final unit cost. Our ASIP processor can be implemented with 4,662 gate equivalent units (GEs) for 65 nm CMOS technology excluding cryptographic units and memories. We integrated and analysed four cryptographic modules: AES and Simeck block ciphers, WG-5 stream cipher, and ACE authenticated encryption module. Our HSM achieves very good efficiencies for both block and stream ciphers. Specifically for the AES cipher, we improve over a previous programmable AES implementation result by 32x. We increase performance dramatically and increase/decrease area by 17.97/17.14% respectively. These results fulfill the requirements of extremely constrained devices and allow the inclusion of cryptographic units into the datapath of our ASIP processor

    Fault attacks on RSA and elliptic curve cryptosystems

    Full text link
    This thesis answered how a fault attack targeting software used to program EEPROM can threaten hardware devices, for instance IoT devices. The successful fault attacks proposed in this thesis will certainly warn designers of hardware devices of the security risks their devices may face on the programming leve

    On the State of Crypto-Agility

    Get PDF
    The demand for crypto-agility, although dating back for more than two decades, recently started to increase in the light of the expected post-quantum cryptography (PQC) migration. Nevertheless, it started to evolve into a science on its own. Therefore, it is important to establish a unified definition of the notion, as well as its related aspects, scope, and practical applications. This paper presents a literature survey on crypto-agility and discusses respective development efforts categorized into different areas, including requirements, characteristics, and possible challenges. We explore the need for crypto-agility beyond PQC algorithms and security protocols and shed some light on current solutions, existing automation mechanisms, and best practices in this field. We evaluate the state of readiness for crypto-agility, and offer a discussion on the identified open issues. The results of our survey indicate a need for a comprehensive understanding. Further, more agile design paradigms are required in developing new IT systems, and in refactoring existing ones, in order to realize crypto-agility on a broad scale

    RFID Technology in Intelligent Tracking Systems in Construction Waste Logistics Using Optimisation Techniques

    Get PDF
    Construction waste disposal is an urgent issue for protecting our environment. This paper proposes a waste management system and illustrates the work process using plasterboard waste as an example, which creates a hazardous gas when land filled with household waste, and for which the recycling rate is less than 10% in the UK. The proposed system integrates RFID technology, Rule-Based Reasoning, Ant Colony optimization and knowledge technology for auditing and tracking plasterboard waste, guiding the operation staff, arranging vehicles, schedule planning, and also provides evidence to verify its disposal. It h relies on RFID equipment for collecting logistical data and uses digital imaging equipment to give further evidence; the reasoning core in the third layer is responsible for generating schedules and route plans and guidance, and the last layer delivers the result to inform users. The paper firstly introduces the current plasterboard disposal situation and addresses the logistical problem that is now the main barrier to a higher recycling rate, followed by discussion of the proposed system in terms of both system level structure and process structure. And finally, an example scenario will be given to illustrate the systemโ€™s utilization
    corecore