452 research outputs found

    Small unmanned airborne systems to support oil and gas pipeline monitoring and mapping

    Get PDF
    Acknowledgments We thank Johan Havelaar, Aeryon Labs Inc., AeronVironment Inc. and Aeronautics Inc. for kindly permitting the use of materials in Fig. 1.Peer reviewedPublisher PD

    Unmanned Aerial Vehicles (UAVs) in environmental biology: A Review

    Get PDF
    Acquiring information about the environment is a key step during each study in the field of environmental biology at different levels, from an individual species to community and biome. However, obtaining information about the environment is frequently difficult because of, for example, the phenological timing, spatial distribution of a species or limited accessibility of a particular area for the field survey. Moreover, remote sensing technology, which enables the observation of the Earth’s surface and is currently very common in environmental research, has many limitations such as insufficient spatial, spectral and temporal resolution and a high cost of data acquisition. Since the 1990s, researchers have been exploring the potential of different types of unmanned aerial vehicles (UAVs) for monitoring Earth’s surface. The present study reviews recent scientific literature dealing with the use of UAV in environmental biology. Amongst numerous papers, short communications and conference abstracts, we selected 110 original studies of how UAVs can be used in environmental biology and which organisms can be studied in this manner. Most of these studies concerned the use of UAV to measure the vegetation parameters such as crown height, volume, number of individuals (14 studies) and quantification of the spatio-temporal dynamics of vegetation changes (12 studies). UAVs were also frequently applied to count birds and mammals, especially those living in the water. Generally, the analytical part of the present study was divided into following sections: (1) detecting, assessing and predicting threats on vegetation, (2) measuring the biophysical parameters of vegetation, (3) quantifying the dynamics of changes in plants and habitats and (4) population and behaviour studies of animals. At the end, we also synthesised all the information showing, amongst others, the advances in environmental biology because of UAV application. Considering that 33% of studies found and included in this review were published in 2017 and 2018, it is expected that the number and variety of applications of UAVs in environmental biology will increase in the future

    Automatic Identification and Monitoring of Plant Diseases Using Unmanned Aerial Vehicles: A Review

    Get PDF
    Disease diagnosis is one of the major tasks for increasing food production in agriculture. Although precision agriculture (PA) takes less time and provides a more precise application of agricultural activities, the detection of disease using an Unmanned Aerial System (UAS) is a challenging task. Several Unmanned Aerial Vehicles (UAVs) and sensors have been used for this purpose. The UAVs’ platforms and their peripherals have their own limitations in accurately diagnosing plant diseases. Several types of image processing software are available for vignetting and orthorectification. The training and validation of datasets are important characteristics of data analysis. Currently, different algorithms and architectures of machine learning models are used to classify and detect plant diseases. These models help in image segmentation and feature extractions to interpret results. Researchers also use the values of vegetative indices, such as Normalized Difference Vegetative Index (NDVI), Crop Water Stress Index (CWSI), etc., acquired from different multispectral and hyperspectral sensors to fit into the statistical models to deliver results. There are still various drifts in the automatic detection of plant diseases as imaging sensors are limited by their own spectral bandwidth, resolution, background noise of the image, etc. The future of crop health monitoring using UAVs should include a gimble consisting of multiple sensors, large datasets for training and validation, the development of site-specific irradiance systems, and so on. This review briefly highlights the advantages of automatic detection of plant diseases to the growers

    An Unmanned Lighter-Than-Air Platform for Large Scale Land Monitoring

    Get PDF
    The concept and preliminary design of an unmanned lighter-than-air (LTA) platform instrumented with different remote sensing technologies is presented. The aim is to assess the feasibility of using a remotely controlled airship for the land monitoring of medium sized (up to 107 m2) urban or rural areas at relatively low altitudes (below 1000 m) and its potential convenience with respect to other standard remote and in-situ sensing systems. The proposal includes equipment for high-definition visual, thermal, and hyperspectral imaging as well as LiDAR scanning. The data collected from these different sources can be then combined to obtain geo-referenced products such as land use land cover (LULC), soil water content (SWC), land surface temperature (LSC), and leaf area index (LAI) maps, among others. The potential uses for diffuse structural health monitoring over built-up areas are discussed as well. Several mission typologies are considere

    Multitemporal assessment of crop parameters using multisensorial flying platforms

    Get PDF
    UAV sensors suitable for precision farming (Sony NEX-5n RGB camera; Canon Powershot modified to infrared sensitivity; MCA6 Tetracam; UAV spectrometer) were compared over differently treated grassland. The high resolution infrared and RGB camera allows spatial analysis of vegetation cover while the UAV spectrometer enables detailed analysis of spectral reflectance at single points. The high spatial and six-band spectral resolution of the MCA6 combines the opportunities of spatial and spectral analysis, but requires huge calibration efforts to acquire reliable data. All investigated systems were able to provide useful information in different distinct research areas of interest in the spatial or spectral domain. The UAV spectrometer was further used to assess multiangular reflectance patterns of wheat. By flying the UAV in a hemispherical path and directing the spectrometer towards the center of this hemisphere, the system acts like a large goniometer. Other than ground based goniometers, this novel method allows huge diameters without any need for infrastructures on the ground. Our experimental results shows good agreement with models and other goniometers, proving the approach valid. UAVs are capable of providing airborne data with a high spatial and temporal resolution due to their flexible and easy use. This was demonstrated in a two year survey. A high resolution RGB camera was flown every week over experimental plots of barley. From the RGB imagery a time series of the barley development was created using the color values. From this analysis we could track differences in the growth of multiple seeding densities and identify events of plant development such as ear pushing. These results lead towards promising practical applications that could be used in breeding for the phenotyping of crop varieties or in the scope of precision farming. With the advent of high endurance UAVs such as airships and the development of better light weight sensors, an exciting future for remote sensing from UAV in agriculture is expected

    Real-time and post-processed georeferencing for hyperpspectral drone remote sensing

    Get PDF
    The use of drones and photogrammetric technologies are increasing rapidly in different applications. Currently, drone processing workflow is in most cases based on sequential image acquisition and post-processing, but there are great interests towards real-time solutions. Fast and reliable real-time drone data processing can benefit, for instance, environmental monitoring tasks in precision agriculture and in forest. Recent developments in miniaturized and low-cost inertial measurement systems and GNSS sensors, and Real-time kinematic (RTK) position data are offering new perspectives for the comprehensive remote sensing applications. The combination of these sensors and light-weight and low-cost multi- or hyperspectral frame sensors in drones provides the opportunity of creating near real-time or real-time remote sensing data of target object. We have developed a system with direct georeferencing onboard drone to be used combined with hyperspectral frame cameras in real-time remote sensing applications. The objective of this study is to evaluate the real-time georeferencing comparing with post-processing solutions. Experimental data sets were captured in agricultural and forested test sites using the system. The accuracy of onboard georeferencing data were better than 0.5 m. The results showed that the real-time remote sensing is promising and feasible in both test sites. © Authors 2018. CC BY 4.0 License.Peer reviewe

    Small Unmanned Aerial Systems (sUAS) for environmental remote sensing: challenges and opportunities revisited

    Get PDF
    Hardin and Jensen (2011) presented six challenges to using small Unmanned Aerial Systems (sUAS) for environmental remote sensing: challenge of the hostile flying environment, challenge of power, challenge of available sensors, challenge of payload weight, challenge of data analysis, and challenge of regulation. Eight years later we revisit each of the challenges in the context of the current sUAS environment. We conclude that technological advances made in the interim (as applied to environmental remote sensing) have either (1) improved practitioner ability to respond to a challenge or (2) decreased the magnitude of the challenge itself. However, relatively short flight time remains a primary challenge to using sUAS in environmental remote sensing

    UAVs for the Environmental Sciences

    Get PDF
    This book gives an overview of the usage of UAVs in environmental sciences covering technical basics, data acquisition with different sensors, data processing schemes and illustrating various examples of application
    • …
    corecore