4,834 research outputs found

    A Lightweight Network-Controlled Power Strip for Low-Cost Cluster Systems

    Get PDF
    Low-cost clusters are not equipped with costly, sophisticated tools and cannot be controlled remotely. This work aims at addressing this issue and develops a lightweight network-controlled power strip, which enables administrators to monitor the cluster and perform operation via remote. The power strip is controlled via a web interface and a RESTful web service, which are implemented with the programming language Python and the web framework Flask. The solution is inexpensive and easy to implement and use. In this paper, we describe in detail the development and construction of the prototype of the solution and discuss its purchase cost and power consumption

    Index to 1981 NASA Tech Briefs, volume 6, numbers 1-4

    Get PDF
    Short announcements of new technology derived from the R&D activities of NASA are presented. These briefs emphasize information considered likely to be transferrable across industrial, regional, or disciplinary lines and are issued to encourage commercial application. This index for 1981 Tech Briefs contains abstracts and four indexes: subject, personal author, originating center, and Tech Brief Number. The following areas are covered: electronic components and circuits, electronic systems, physical sciences, materials, life sciences, mechanics, machinery, fabrication technology, and mathematics and information sciences

    Index to 1984 NASA Tech Briefs, volume 9, numbers 1-4

    Get PDF
    Short announcements of new technology derived from the R&D activities of NASA are presented. These briefs emphasize information considered likely to be transferrable across industrial, regional, or disciplinary lines and are issued to encourage commercial application. This index for 1984 Tech B Briefs contains abstracts and four indexes: subject, personal author, originating center, and Tech Brief Number. The following areas are covered: electronic components and circuits, electronic systems, physical sciences, materials, life sciences, mechanics, machinery, fabrication technology, and mathematics and information sciences

    Infrastructure for Detector Research and Development towards the International Linear Collider

    Full text link
    The EUDET-project was launched to create an infrastructure for developing and testing new and advanced detector technologies to be used at a future linear collider. The aim was to make possible experimentation and analysis of data for institutes, which otherwise could not be realized due to lack of resources. The infrastructure comprised an analysis and software network, and instrumentation infrastructures for tracking detectors as well as for calorimetry.Comment: 54 pages, 48 picture

    Index to NASA Tech Briefs, 1975

    Get PDF
    This index contains abstracts and four indexes--subject, personal author, originating Center, and Tech Brief number--for 1975 Tech Briefs

    Tower grounding improvement versus line surge arresters: comparison of remedial measures for high-BFOR subtransmission lines

    Get PDF
    This paper presents a technical/economic comparison between remedial measures aimed at improving the lightning performance of an existing Italian three-phase 150-kV overhead line. The line is characterized by a very high back-flashover rate (BFOR), due to large grounding resistance values. Two countermeasures are proposed: grounding system improvement with additional vertical rods and line metal oxide surge arrester (MOSA) installation on one or all phases. A Monte Carlo ATP-EMTP procedure developed by the authors, which takes into account both the tower grounding nonlinear transient response due to soil ionization and MOSA nonlinear response, has been applied to evaluate and compare the effectiveness of the proposed countermeasures. The installation of MOSA on all phases is technically the best option, but it is relatively expensive. Tower grounding improvement and MOSA installation on the lower phase yield very similar BFORs: the economic comparison strongly depends on tower's accessibility and soil nature

    Enabling Technologies for Silicon Microstrip Tracking Detectors at the HL-LHC

    Full text link
    While the tracking detectors of the ATLAS and CMS experiments have shown excellent performance in Run 1 of LHC data taking, and are expected to continue to do so during LHC operation at design luminosity, both experiments will have to exchange their tracking systems when the LHC is upgraded to the high-luminosity LHC (HL-LHC) around the year 2024. The new tracking systems need to operate in an environment in which both the hit densities and the radiation damage will be about an order of magnitude higher than today. In addition, the new trackers need to contribute to the first level trigger in order to maintain a high data-taking efficiency for the interesting processes. Novel detector technologies have to be developed to meet these very challenging goals. The German groups active in the upgrades of the ATLAS and CMS tracking systems have formed a collaborative "Project on Enabling Technologies for Silicon Microstrip Tracking Detectors at the HL-LHC" (PETTL), which was supported by the Helmholtz Alliance "Physics at the Terascale" during the years 2013 and 2014. The aim of the project was to share experience and to work together on key areas of mutual interest during the R&D phase of these upgrades. The project concentrated on five areas, namely exchange of experience, radiation hardness of silicon sensors, low mass system design, automated precision assembly procedures, and irradiations. This report summarizes the main achievements

    The Copernicus project

    Get PDF
    The Copernicus spacecraft, to be launched on May 4, 2009, is designed for scientific exploration of the planet Pluto. The main objectives of this exploration is to accurately determine the mass, density, and composition of the two bodies in the Pluto-Charon system. A further goal of the exploration is to obtain precise images of the system. The spacecraft will be designed for three axis stability control. It will use the latest technological advances to optimize the performance, reliability, and cost of the spacecraft. Due to the long duration of the mission, nominally 12.6 years, the spacecraft will be powered by a long lasting radioactive power source. Although this type of power may have some environmental drawbacks, currently it is the only available source that is suitable for this mission. The planned trajectory provides flybys of Jupiter and Saturn. These flybys provide an opportunity for scientific study of these planets in addition to Pluto. The information obtained on these flybys will supplement the data obtained by the Voyager and Galileo missions. The topics covered include: (1) scientific instrumentation; (2) mission management, planning, and costing; (3) power and propulsion system; (4) structural subsystem; (5) command, control, and communication; and (6) attitude and articulation control

    DottedDB: anti-entropy without merkle trees, deletes without tombstones

    Get PDF
    To achieve high availability in the face of network partitions, many distributed databases adopt eventual consistency, allow temporary conflicts due to concurrent writes, and use some form of per-key logical clock to detect and resolve such conflicts. Furthermore, nodes synchronize periodically to ensure replica convergence in a process called anti-entropy, normally using Merkle Trees. We present the design of DottedDB, a Dynamo-like key-value store, which uses a novel node-wide logical clock framework, overcoming three fundamental limitations of the state of the art: (1) minimize the metadata per key necessary to track causality, avoiding its growth even in the face of node churn; (2) correctly and durably delete keys, with no need for tombstones; (3) offer a lightweight anti-entropy mechanism to converge replicated data, avoiding the need for Merkle Trees. We evaluate DottedDB against MerkleDB, an otherwise identical database, but using per-key logical clocks and Merkle Trees for anti-entropy, to precisely measure the impact of the novel approach. Results show that: causality metadata per object always converges rapidly to only one id-counter pair; distributed deletes are correctly achieved without global coordination and with constant metadata; divergent nodes are synchronized faster, with less memory-footprint and with less communication overhead than using Merkle Trees.This work is financed by the ERDF – European Regional Development Fund through the Operational Programme for Competitiveness and Internationalisation - COMPETE 2020 Programme within project «POCI-01-0145-FEDER-006961», and by National Funds through the Portuguese funding agency, FCT - Fundação para a Ciência e a Tecnologia as part of project «UID/EEA/50014/2013».info:eu-repo/semantics/publishedVersio
    corecore