1,419 research outputs found

    Attack Taxonomy Methodology Applied to Web Services

    Get PDF
    With the rapid evolution of attack techniques and attacker targets, companies and researchers question the applicability and effectiveness of security taxonomies. Although the attack taxonomies allow us to propose a classification scheme, they are easily rendered useless by the generation of new attacks. Due to its distributed and open nature, web services give rise to new security challenges. The purpose of this study is to apply a methodology for categorizing and updating attacks prior to the continuous creation and evolution of new attack schemes on web services. Also, in this research, we collected thirty-three (33) types of attacks classified into five (5) categories, such as brute force, spoofing, flooding, denial-of-services, and injection attacks, in order to obtain the state of the art of vulnerabilities against web services. Finally, the attack taxonomy is applied to a web service, modeling through attack trees. The use of this methodology allows us to prevent future attacks applied to many technologies, not only web services.Con la rápida evolución de las técnicas de ataque y los objetivos de los atacantes, las empresas y los investigadores cuestionan la aplicabilidad y eficacia de las taxonomías de seguridad. Si bien las taxonomías de ataque nos permiten proponer un esquema de clasificación, son fácilmente inutilizadas por la generación de nuevos ataques. Debido a su naturaleza distribuida y abierta, los servicios web plantean nuevos desafíos de seguridad. El propósito de este estudio es aplicar una metodología para categorizar y actualizar ataques previos a la continua creación y evolución de nuevos esquemas de ataque a servicios web. Asimismo, en esta investigación recolectamos treinta y tres (33) tipos de ataques clasificados en cinco (5) categorías, tales como fuerza bruta, suplantación de identidad, inundación, denegación de servicios y ataques de inyección, con el fin de obtener el estado del arte de las vulnerabilidades contra servicios web. Finalmente, se aplica la taxonomía de ataque a un servicio web, modelado a través de árboles de ataque. El uso de esta metodología nos permite prevenir futuros ataques aplicados a muchas tecnologías, no solo a servicios web

    A novel IoT intrusion detection framework using Decisive Red Fox optimization and descriptive back propagated radial basis function models.

    Get PDF
    The Internet of Things (IoT) is extensively used in modern-day life, such as in smart homes, intelligent transportation, etc. However, the present security measures cannot fully protect the IoT due to its vulnerability to malicious assaults. Intrusion detection can protect IoT devices from the most harmful attacks as a security tool. Nevertheless, the time and detection efficiencies of conventional intrusion detection methods need to be more accurate. The main contribution of this paper is to develop a simple as well as intelligent security framework for protecting IoT from cyber-attacks. For this purpose, a combination of Decisive Red Fox (DRF) Optimization and Descriptive Back Propagated Radial Basis Function (DBRF) classification are developed in the proposed work. The novelty of this work is, a recently developed DRF optimization methodology incorporated with the machine learning algorithm is utilized for maximizing the security level of IoT systems. First, the data preprocessing and normalization operations are performed to generate the balanced IoT dataset for improving the detection accuracy of classification. Then, the DRF optimization algorithm is applied to optimally tune the features required for accurate intrusion detection and classification. It also supports increasing the training speed and reducing the error rate of the classifier. Moreover, the DBRF classification model is deployed to categorize the normal and attacking data flows using optimized features. Here, the proposed DRF-DBRF security model's performance is validated and tested using five different and popular IoT benchmarking datasets. Finally, the results are compared with the previous anomaly detection approaches by using various evaluation parameters

    A Survey on Forensics and Compliance Auditing for Critical Infrastructure Protection

    Get PDF
    The broadening dependency and reliance that modern societies have on essential services provided by Critical Infrastructures is increasing the relevance of their trustworthiness. However, Critical Infrastructures are attractive targets for cyberattacks, due to the potential for considerable impact, not just at the economic level but also in terms of physical damage and even loss of human life. Complementing traditional security mechanisms, forensics and compliance audit processes play an important role in ensuring Critical Infrastructure trustworthiness. Compliance auditing contributes to checking if security measures are in place and compliant with standards and internal policies. Forensics assist the investigation of past security incidents. Since these two areas significantly overlap, in terms of data sources, tools and techniques, they can be merged into unified Forensics and Compliance Auditing (FCA) frameworks. In this paper, we survey the latest developments, methodologies, challenges, and solutions addressing forensics and compliance auditing in the scope of Critical Infrastructure Protection. This survey focuses on relevant contributions, capable of tackling the requirements imposed by massively distributed and complex Industrial Automation and Control Systems, in terms of handling large volumes of heterogeneous data (that can be noisy, ambiguous, and redundant) for analytic purposes, with adequate performance and reliability. The achieved results produced a taxonomy in the field of FCA whose key categories denote the relevant topics in the literature. Also, the collected knowledge resulted in the establishment of a reference FCA architecture, proposed as a generic template for a converged platform. These results are intended to guide future research on forensics and compliance auditing for Critical Infrastructure Protection.info:eu-repo/semantics/publishedVersio

    Encountering distributed denial of service attack utilizing federated software defined network

    Get PDF
    This research defines the distributed denial of service (DDoS) problem in software-defined-networks (SDN) environments. The proposes solution uses Software defined networks capabilities to reduce risk, introduces a collaborative, distributed defense mechanism rather than server-side filtration. Our proposed network detection and prevention agent (NDPA) algorithm negotiates the maximum amount of traffic allowed to be passed to server by reconfiguring network switches and routers to reduce the ports' throughput of the network devices by the specified limit ratio. When the passed traffic is back to normal, NDPA starts network recovery to normal throughput levels, increasing ports' throughput by adding back the limit ratio gradually each time cycle. The simulation results showed that the proposed algorithms successfully detected and prevented a DDoS attack from overwhelming the targeted server. The server was able to coordinate its operations with the SDN controllers through a communication mechanism created specifically for this purpose. The system was also able to determine when the attack was over and utilize traffic engineering to improve the quality of service (QoS). The solution was designed with a sophisticated way and high level of separation of duties between components so it would not be affected by the design aspect of the network architecture

    TPAAD: two‐phase authentication system for denial of service attack detection and mitigation using machine learning in software‐defined network.

    Get PDF
    Software-defined networking (SDN) has received considerable attention and adoption owing to its inherent advantages, such as enhanced scalability, increased adaptability, and the ability to exercise centralized control. However, the control plane of the system is vulnerable to denial-of-service (DoS) attacks, which are a primary focus for attackers. These attacks have the potential to result in substantial delays and packet loss. In this study, we present a novel system called Two-Phase Authentication for Attack Detection that aims to enhance the security of SDN by mitigating DoS attacks. The methodology utilized in our study involves the implementation of packet filtration and machine learning classification techniques, which are subsequently followed by the targeted restriction of malevolent network traffic. Instead of completely deactivating the host, the emphasis lies on preventing harmful communication. Support vector machine and K-nearest neighbours algorithms were utilized for efficient detection on the CICDoS 2017 dataset. The deployed model was utilized within an environment designed for the identification of threats in SDN. Based on the observations of the banned queue, our system allows a host to reconnect when it is no longer contributing to malicious traffic. The experiments were run on a VMware Ubuntu, and an SDN environment was created using Mininet and the RYU controller. The results of the tests demonstrated enhanced performance in various aspects, including the reduction of false positives, the minimization of central processing unit utilization and control channel bandwidth consumption, the improvement of packet delivery ratio, and the decrease in the number of flow requests submitted to the controller. These results confirm that our Two-Phase Authentication for Attack Detection architecture identifies and mitigates SDN DoS attacks with low overhead

    Distributed Ledger Technology (DLT) Applications in Payment, Clearing, and Settlement Systems:A Study of Blockchain-Based Payment Barriers and Potential Solutions, and DLT Application in Central Bank Payment System Functions

    Get PDF
    Payment, clearing, and settlement systems are essential components of the financial markets and exert considerable influence on the overall economy. While there have been considerable technological advancements in payment systems, the conventional systems still depend on centralized architecture, with inherent limitations and risks. The emergence of Distributed ledger technology (DLT) is being regarded as a potential solution to transform payment and settlement processes and address certain challenges posed by the centralized architecture of traditional payment systems (Bank for International Settlements, 2017). While proof-of-concept projects have demonstrated the technical feasibility of DLT, significant barriers still hinder its adoption and implementation. The overarching objective of this thesis is to contribute to the developing area of DLT application in payment, clearing and settlement systems, which is still in its initial stages of applications development and lacks a substantial body of scholarly literature and empirical research. This is achieved by identifying the socio-technical barriers to adoption and diffusion of blockchain-based payment systems and the solutions proposed to address them. Furthermore, the thesis examines and classifies various applications of DLT in central bank payment system functions, offering valuable insights into the motivations, DLT platforms used, and consensus algorithms for applicable use cases. To achieve these objectives, the methodology employed involved a systematic literature review (SLR) of academic literature on blockchain-based payment systems. Furthermore, we utilized a thematic analysis approach to examine data collected from various sources regarding the use of DLT applications in central bank payment system functions, such as central bank white papers, industry reports, and policy documents. The study's findings on blockchain-based payment systems barriers and proposed solutions; challenge the prevailing emphasis on technological and regulatory barriers in the literature and industry discourse regarding the adoption and implementation of blockchain-based payment systems. It highlights the importance of considering the broader socio-technical context and identifying barriers across all five dimensions of the social technical framework, including technological, infrastructural, user practices/market, regulatory, and cultural dimensions. Furthermore, the research identified seven DLT applications in central bank payment system functions. These are grouped into three overarching themes: central banks' operational responsibilities in payment and settlement systems, issuance of central bank digital money, and regulatory oversight/supervisory functions, along with other ancillary functions. Each of these applications has unique motivations or value proposition, which is the underlying reason for utilizing in that particular use case

    A Trust Management Framework for Vehicular Ad Hoc Networks

    Get PDF
    The inception of Vehicular Ad Hoc Networks (VANETs) provides an opportunity for road users and public infrastructure to share information that improves the operation of roads and the driver experience. However, such systems can be vulnerable to malicious external entities and legitimate users. Trust management is used to address attacks from legitimate users in accordance with a user’s trust score. Trust models evaluate messages to assign rewards or punishments. This can be used to influence a driver’s future behaviour or, in extremis, block the driver. With receiver-side schemes, various methods are used to evaluate trust including, reputation computation, neighbour recommendations, and storing historical information. However, they incur overhead and add a delay when deciding whether to accept or reject messages. In this thesis, we propose a novel Tamper-Proof Device (TPD) based trust framework for managing trust of multiple drivers at the sender side vehicle that updates trust, stores, and protects information from malicious tampering. The TPD also regulates, rewards, and punishes each specific driver, as required. Furthermore, the trust score determines the classes of message that a driver can access. Dissemination of feedback is only required when there is an attack (conflicting information). A Road-Side Unit (RSU) rules on a dispute, using either the sum of products of trust and feedback or official vehicle data if available. These “untrue attacks” are resolved by an RSU using collaboration, and then providing a fixed amount of reward and punishment, as appropriate. Repeated attacks are addressed by incremental punishments and potentially driver access-blocking when conditions are met. The lack of sophistication in this fixed RSU assessment scheme is then addressed by a novel fuzzy logic-based RSU approach. This determines a fairer level of reward and punishment based on the severity of incident, driver past behaviour, and RSU confidence. The fuzzy RSU controller assesses judgements in such a way as to encourage drivers to improve their behaviour. Although any driver can lie in any situation, we believe that trustworthy drivers are more likely to remain so, and vice versa. We capture this behaviour in a Markov chain model for the sender and reporter driver behaviours where a driver’s truthfulness is influenced by their trust score and trust state. For each trust state, the driver’s likelihood of lying or honesty is set by a probability distribution which is different for each state. This framework is analysed in Veins using various classes of vehicles under different traffic conditions. Results confirm that the framework operates effectively in the presence of untrue and inconsistent attacks. The correct functioning is confirmed with the system appropriately classifying incidents when clarifier vehicles send truthful feedback. The framework is also evaluated against a centralized reputation scheme and the results demonstrate that it outperforms the reputation approach in terms of reduced communication overhead and shorter response time. Next, we perform a set of experiments to evaluate the performance of the fuzzy assessment in Veins. The fuzzy and fixed RSU assessment schemes are compared, and the results show that the fuzzy scheme provides better overall driver behaviour. The Markov chain driver behaviour model is also examined when changing the initial trust score of all drivers

    Security at the Edge for Resource-Limited IoT Devices

    Get PDF
    The Internet of Things (IoT) is rapidly growing, with an estimated 14.4 billion active endpoints in 2022 and a forecast of approximately 30 billion connected devices by 2027. This proliferation of IoT devices has come with significant security challenges, including intrinsic security vulnerabilities, limited computing power, and the absence of timely security updates. Attacks leveraging such shortcomings could lead to severe consequences, including data breaches and potential disruptions to critical infrastructures. In response to these challenges, this research paper presents the IoT Proxy, a modular component designed to create a more resilient and secure IoT environment, especially in resource-limited scenarios. The core idea behind the IoT Proxy is to externalize security-related aspects of IoT devices by channeling their traffic through a secure network gateway equipped with different Virtual Network Security Functions (VNSFs). Our solution includes a Virtual Private Network (VPN) terminator and an Intrusion Prevention System (IPS) that uses a machine learning-based technique called oblivious authentication to identify connected devices. The IoT Proxy’s modular, scalable, and externalized security approach creates a more resilient and secure IoT environment, especially for resource-limited IoT devices. The promising experimental results from laboratory testing demonstrate the suitability of IoT Proxy to secure real-world IoT ecosystems
    corecore