46 research outputs found

    Survey on Lightweight Primitives and Protocols for RFID in Wireless Sensor Networks

    Get PDF
    The use of radio frequency identification (RFID) technologies is becoming widespread in all kind of wireless network-based applications. As expected, applications based on sensor networks, ad-hoc or mobile ad hoc networks (MANETs) can be highly benefited from the adoption of RFID solutions. There is a strong need to employ lightweight cryptographic primitives for many security applications because of the tight cost and constrained resource requirement of sensor based networks. This paper mainly focuses on the security analysis of lightweight protocols and algorithms proposed for the security of RFID systems. A large number of research solutions have been proposed to implement lightweight cryptographic primitives and protocols in sensor and RFID integration based resource constraint networks. In this work, an overview of the currently discussed lightweight primitives and their attributes has been done. These primitives and protocols have been compared based on gate equivalents (GEs), power, technology, strengths, weaknesses and attacks. Further, an integration of primitives and protocols is compared with the possibilities of their applications in practical scenarios

    Adding Security to Control Area Network of Vehicles by Using SHA-3

    Get PDF
    The lack of security in the vehicles on the road is real and should be taken seriously. Since the lifespan of vehicles has average of eleven years, this means if we start to implement new changes to vehicles today, it would takes eleven years to make sure most vehicles on the road support our implementation. This is important as the number of lines of codes in vehicles are ever increasing and becoming more autonomous with the ability for vehicles to drive themselves. But there is no security implemented in their low level systems such as the Control Area Network which is being used to transfer real time critical information and commands such as engine speed and the brake control. This project attempts to solve the lack of secruity by using SHA3 hashing algorithm based on the Keceak algorithm. The reason Keceak was chosen to be the SHA3 algorithm because it is hardware friendly and fast. Vehicle\u27s manufacturers do not share information about the electrical parts used in the vehicles and their specification, this project presents the lowest hardware specification required to use SHA3 on the Control Area Network which is a process with a clock frequency of approximately 400 MHz. It is important to have a real-time communication network for the Control Area Network which also known as CAN. SHA3 is used to create a hash of the CAN message along with a node specific key and an IV to provide authentication and semantic security respectively; The digest will be transferred along with the message. To use the mechanism proposed in this project, all CAN nodes communicate with each other required to support CAN FD and also have the minimum hardware specification

    Fully Integrated Passive UHF RFID Tag for Hash-Based Mutual Authentication Protocol

    Get PDF
    Passive radio-frequency identification (RFID) tag has been used in many applications. While the RFID market is expected to grow, concerns about security and privacy of the RFID tag should be overcome for the future use. To overcome these issues, privacy-preserving authentication protocols based on cryptographic algorithms have been designed. However, to the best of our knowledge, evaluation of the whole tag, which includes an antenna, an analog front end, and a digital processing block, that runs authentication protocols has not been studied. In this paper, we present an implementation and evaluation of a fully integrated passive UHF RFID tag that runs a privacy-preserving mutual authentication protocol based on a hash function. We design a single chip including the analog front end and the digital processing block. We select a lightweight hash function supporting 80-bit security strength and a standard hash function supporting 128-bit security strength. We show that when the lightweight hash function is used, the tag completes the protocol with a reader-tag distance of 10 cm. Similarly, when the standard hash function is used, the tag completes the protocol with the distance of 8.5 cm. We discuss the impact of the peak power consumption of the tag on the distance of the tag due to the hash function

    Lightweight cryptography methods

    Get PDF
    While our conventional cryptography methods, such for AES (encryption), SHA-256 (hashing) and RSA/Elliptic Curve (signing), work well on systems which have reasonable processing power and memory capabilities, these do not scale well into a world with embedded systems and sensor networks. Thus lightweight cryptography methods are proposed to overcome many of the problems of conventional cryptography. This includes constraints related to physical size, processing requirements, memory limitation and energy drain. This paper outlines many of the techniques that are defined as replacements for conventional cryptography within an Internet of Things (IoT) space and discuss some trends in the design of lightweight algorithms

    A Comprehensive Survey on the Implementations, Attacks, and Countermeasures of the Current NIST Lightweight Cryptography Standard

    Full text link
    This survey is the first work on the current standard for lightweight cryptography, standardized in 2023. Lightweight cryptography plays a vital role in securing resource-constrained embedded systems such as deeply-embedded systems (implantable and wearable medical devices, smart fabrics, smart homes, and the like), radio frequency identification (RFID) tags, sensor networks, and privacy-constrained usage models. National Institute of Standards and Technology (NIST) initiated a standardization process for lightweight cryptography and after a relatively-long multi-year effort, eventually, in Feb. 2023, the competition ended with ASCON as the winner. This lightweight cryptographic standard will be used in deeply-embedded architectures to provide security through confidentiality and integrity/authentication (the dual of the legacy AES-GCM block cipher which is the NIST standard for symmetric key cryptography). ASCON's lightweight design utilizes a 320-bit permutation which is bit-sliced into five 64-bit register words, providing 128-bit level security. This work summarizes the different implementations of ASCON on field-programmable gate array (FPGA) and ASIC hardware platforms on the basis of area, power, throughput, energy, and efficiency overheads. The presented work also reviews various differential and side-channel analysis attacks (SCAs) performed across variants of ASCON cipher suite in terms of algebraic, cube/cube-like, forgery, fault injection, and power analysis attacks as well as the countermeasures for these attacks. We also provide our insights and visions throughout this survey to provide new future directions in different domains. This survey is the first one in its kind and a step forward towards scrutinizing the advantages and future directions of the NIST lightweight cryptography standard introduced in 2023

    Lightweight wireless network authentication scheme for constrained oracle sensors

    Get PDF
    x, 212 leaves : ill. (some col.) ; 29 cmIncludes abstract and appendices.Includes bibliographical references (leaves 136-147).With the significant increase in the dependence of contextual data from constrained IoT, the blockchain has been proposed as a possible solution to address growing concerns from organizations. To address this, the Lightweight Blockchain Authentication for Constrained Sensors (LBACS) scheme was proposed and evaluated using quantitative and qualitative methods. LBACS was designed with constrained Wireless Sensor Networks (WSN) in mind and independent of a blockchain implementation. It asserts the authentication and provenance of constrained IoT on the blockchain utilizing a multi-signature approach facilitated by symmetric and asymmetric methods and sufficient considerations for key and certificate registry management. The metrics, threat assessment and comparison to existing WSN authentication schemes conducted asserted the pragmatic use of LBACS to provide authentication, blockchain provenance, integrity, auditable, revocation, weak backward and forward secrecy and universal forgeability. The research has several implications for the ubiquitous use of IoT and growing interest in the blockchain

    Enhancing the Key Distribution Model in the RFID-Enabled Supply Chains

    Get PDF
    Abstract—In this paper, we point out the use of secret sharing strategies as a promising solution for managing the key distribu-tion and recovery in the Radio Frequency IDentification (RFID)-enabled supply chains. To this end, we designed a new model based on a secret sharing approach to solve the key distribution issue within the supply chains. We further proposed a secret key update protocol incorporating a resynchronisation capability to counter the disruptive effects of location tracking, replay attacks, and desynchronisation attacks. Compared with relevant approaches, our work demonstrates a number of advantages in terms of security and performance. Index Terms—RFID; key management; secret sharing; I
    corecore