2,691 research outputs found

    Deploying AI Frameworks on Secure HPC Systems with Containers

    Full text link
    The increasing interest in the usage of Artificial Intelligence techniques (AI) from the research community and industry to tackle "real world" problems, requires High Performance Computing (HPC) resources to efficiently compute and scale complex algorithms across thousands of nodes. Unfortunately, typical data scientists are not familiar with the unique requirements and characteristics of HPC environments. They usually develop their applications with high-level scripting languages or frameworks such as TensorFlow and the installation process often requires connection to external systems to download open source software during the build. HPC environments, on the other hand, are often based on closed source applications that incorporate parallel and distributed computing API's such as MPI and OpenMP, while users have restricted administrator privileges, and face security restrictions such as not allowing access to external systems. In this paper we discuss the issues associated with the deployment of AI frameworks in a secure HPC environment and how we successfully deploy AI frameworks on SuperMUC-NG with Charliecloud.Comment: 6 pages, 2 figures, 2019 IEEE High Performance Extreme Computing Conferenc

    HPC Cloud for Scientific and Business Applications: Taxonomy, Vision, and Research Challenges

    Full text link
    High Performance Computing (HPC) clouds are becoming an alternative to on-premise clusters for executing scientific applications and business analytics services. Most research efforts in HPC cloud aim to understand the cost-benefit of moving resource-intensive applications from on-premise environments to public cloud platforms. Industry trends show hybrid environments are the natural path to get the best of the on-premise and cloud resources---steady (and sensitive) workloads can run on on-premise resources and peak demand can leverage remote resources in a pay-as-you-go manner. Nevertheless, there are plenty of questions to be answered in HPC cloud, which range from how to extract the best performance of an unknown underlying platform to what services are essential to make its usage easier. Moreover, the discussion on the right pricing and contractual models to fit small and large users is relevant for the sustainability of HPC clouds. This paper brings a survey and taxonomy of efforts in HPC cloud and a vision on what we believe is ahead of us, including a set of research challenges that, once tackled, can help advance businesses and scientific discoveries. This becomes particularly relevant due to the fast increasing wave of new HPC applications coming from big data and artificial intelligence.Comment: 29 pages, 5 figures, Published in ACM Computing Surveys (CSUR

    EdgeRIC: Empowering Realtime Intelligent Optimization and Control in NextG Networks

    Full text link
    Radio Access Networks (RAN) are increasingly softwarized and accessible via data-collection and control interfaces. RAN intelligent control (RIC) is an approach to manage these interfaces at different timescales. In this paper, we develop a RIC platform called RICworld, consisting of (i) EdgeRIC, which is colocated, but decoupled from the RAN stack, and can access RAN and application-level information to execute AI-optimized and other policies in realtime (sub-millisecond) and (ii) DigitalTwin, a full-stack, trace-driven emulator for training AI-based policies offline. We demonstrate that realtime EdgeRIC operates as if embedded within the RAN stack and significantly outperforms a cloud-based near-realtime RIC (> 15 ms latency) in terms of attained throughput. We train AI-based polices on DigitalTwin, execute them on EdgeRIC, and show that these policies are robust to channel dynamics, and outperform queueing-model based policies by 5% to 25% on throughput and application-level benchmarks in a variety of mobile environments.Comment: 16 pages, 15 figure

    TrIMS: Transparent and Isolated Model Sharing for Low Latency Deep LearningInference in Function as a Service Environments

    Full text link
    Deep neural networks (DNNs) have become core computation components within low latency Function as a Service (FaaS) prediction pipelines: including image recognition, object detection, natural language processing, speech synthesis, and personalized recommendation pipelines. Cloud computing, as the de-facto backbone of modern computing infrastructure for both enterprise and consumer applications, has to be able to handle user-defined pipelines of diverse DNN inference workloads while maintaining isolation and latency guarantees, and minimizing resource waste. The current solution for guaranteeing isolation within FaaS is suboptimal -- suffering from "cold start" latency. A major cause of such inefficiency is the need to move large amount of model data within and across servers. We propose TrIMS as a novel solution to address these issues. Our proposed solution consists of a persistent model store across the GPU, CPU, local storage, and cloud storage hierarchy, an efficient resource management layer that provides isolation, and a succinct set of application APIs and container technologies for easy and transparent integration with FaaS, Deep Learning (DL) frameworks, and user code. We demonstrate our solution by interfacing TrIMS with the Apache MXNet framework and demonstrate up to 24x speedup in latency for image classification models and up to 210x speedup for large models. We achieve up to 8x system throughput improvement.Comment: In Proceedings CLOUD 201
    • …
    corecore