7,334 research outputs found

    Improving the Scalability of DPWS-Based Networked Infrastructures

    Full text link
    The Devices Profile for Web Services (DPWS) specification enables seamless discovery, configuration, and interoperability of networked devices in various settings, ranging from home automation and multimedia to manufacturing equipment and data centers. Unfortunately, the sheer simplicity of event notification mechanisms that makes it fit for resource-constrained devices, makes it hard to scale to large infrastructures with more stringent dependability requirements, ironically, where self-configuration would be most useful. In this report, we address this challenge with a proposal to integrate gossip-based dissemination in DPWS, thus maintaining compatibility with original assumptions of the specification, and avoiding a centralized configuration server or custom black-box middleware components. In detail, we show how our approach provides an evolutionary and non-intrusive solution to the scalability limitations of DPWS and experimentally evaluate it with an implementation based on the the Web Services for Devices (WS4D) Java Multi Edition DPWS Stack (JMEDS).Comment: 28 pages, Technical Repor

    A history and future of Web APIs

    Get PDF

    Semantic multimedia remote display for mobile thin clients

    Get PDF
    Current remote display technologies for mobile thin clients convert practically all types of graphical content into sequences of images rendered by the client. Consequently, important information concerning the content semantics is lost. The present paper goes beyond this bottleneck by developing a semantic multimedia remote display. The principle consists of representing the graphical content as a real-time interactive multimedia scene graph. The underlying architecture features novel components for scene-graph creation and management, as well as for user interactivity handling. The experimental setup considers the Linux X windows system and BiFS/LASeR multimedia scene technologies on the server and client sides, respectively. The implemented solution was benchmarked against currently deployed solutions (VNC and Microsoft-RDP), by considering text editing and WWW browsing applications. The quantitative assessments demonstrate: (1) visual quality expressed by seven objective metrics, e.g., PSNR values between 30 and 42 dB or SSIM values larger than 0.9999; (2) downlink bandwidth gain factors ranging from 2 to 60; (3) real-time user event management expressed by network round-trip time reduction by factors of 4-6 and by uplink bandwidth gain factors from 3 to 10; (4) feasible CPU activity, larger than in the RDP case but reduced by a factor of 1.5 with respect to the VNC-HEXTILE
    corecore