133 research outputs found

    An Overview of Fully On-Chip Inductors

    Get PDF
    This paper focuses on full integration of passive devices, especially inductors with emphasis on multi-layer stacked (MLS) structures of fully integrated inductors using patterned ground shield (PGS) and fully integrated capacitor. Comparison of different structures is focused on the main electrical parameters of integrated inductors (e.g. inductance L, inductance density LA, quality factor Q, frequency of maximum quality factor F Qmax, self-resonant frequency FSR, and series resistance R DC ) and other non-electrical parameters (e.g. required area, manufacturing process, purpose, etc.) that are equally important during comparison of the structures. Categorization of inductor structures with most significant results that was reported in the last years is proposed according to manufacturing process. Final geometrical and electrical properties of the structure in great manner accounts to the fabrication process of integrated passive device. This work offers an overview and state-of-the-art of the integrated inductors as well as manufacturing processes used for their fabrication. Second purpose of this paper is insertion of the proposed structure from our previous work among the other results reported in the last 7 years. With the proposed solution, one can obtain the highest inductance density L A = 23.59 nH/mm 2 and second highest quality factor Q = 10.09 amongst similar solutions reported in standard technologies that is also suitable competition for integrated inductors manufactured in advanced technology nodes

    Doctor of Philosophy

    Get PDF
    dissertationMicroelectromechanical systems (MEMS) resonators on Si have the potential to replace the discrete passive components in a power converter. The main intention of this dissertation is to present a ring-shaped aluminum nitride (AlN) piezoelectric microreson

    High-current integrated battery chargers for mobile applications

    Get PDF
    Battery charging circuits for mobile applications, such as smart phones and tablets, require both small area and low losses. In addition, to reduce the charging time, high current is needed through the converter. In this work, exploration of the Buck, the 3-Level Buck and the Hybrid Buck converter is performed over the input voltage, the total FET area and the load current. An analytical loss model for each topology is constructed and constrated by experimental results. In addition, packaging and bond wire impact on on-chip losses is analyzed by 3D modeling. Finally, a comparison between the topologies is presented determining potential candidates for a maximum on-chip loss of 2 W at output voltage of 4 V and 10 A of output current

    Pushing the Boundary of the 48 V Data Center Power Conversion in the AI and IoT Era

    Get PDF
    openThe increasing interest in cloud-based services, the Internet-of-Things and the take-over of artificial intelligence computing require constant improvement of the power distribution network. Electricity consumption of data centers, which drains a consistent slice of modern world energy production, is projected to increase tremendously during the next decade. Data centers are the backbone of modern economy; as a consequence, energy-aware resource allocation heuristics are constantly researched, leading the major IT services providers to develop new power conversion architectures to increase the overall webfarm distribution efficiency, together reducing the resulting carbon footprint and maximizing their investments. As higher voltage distribution yields lower conduction losses, vendors are moving from the 12 V rack bus to 48 V solutions together with research centers and especially data center developers. As mentioned, efficiency is crucial to address in this scenario and the whole conversion chain, i.e. from the 48 V bus to the CPU/GPU/ASIC voltage, must be optimized to decrease wasted energy inside the server rack. Power density for this converters family is also paramount to consider, as the overall system must occupy as less area and volume as possible. LLC resonant converters are commonly used as IBCs (intermediate bus converters), together with their GaN implementations because of their multiple advantages in efficiency and size, while multiphase-buck-derived topologies are the most common solution to step-down-to and regulate the final processor voltage as they're well-know, easy to scale and design. This dissertation proposes a family of non-isolated, innovative converters capable of increasing the power density and the efficiency of the state-of-the-art 48 V to 1.8/0.9 V conversion. In this work three solutions are proposed, which can be combined or used as stand-alone converters: an ASIC on-chip switched-capacitor resonant voltage divider, two unregulated Google-STC-derived topologies for the IBC stage (48 V to 12 V and 48 V to 4.8 V + 10.6 V dual-output) and a complete 48 V to 1.8 V ultra-dense PoL converter. Each block has been thoroughly tested and researched, therefore mathematical and experimental results are provided for each solution, together with state-of-the-art comparisons and contextualization.The increasing interest in cloud-based services, the Internet-of-Things and the take-over of artificial intelligence computing require constant improvement of the power distribution network. Electricity consumption of data centers, which drains a consistent slice of modern world energy production, is projected to increase tremendously during the next decade. Data centers are the backbone of modern economy; as a consequence, energy-aware resource allocation heuristics are constantly researched, leading the major IT services providers to develop new power conversion architectures to increase the overall webfarm distribution efficiency, together reducing the resulting carbon footprint and maximizing their investments. As higher voltage distribution yields lower conduction losses, vendors are moving from the 12 V rack bus to 48 V solutions together with research centers and especially data center developers. As mentioned, efficiency is crucial to address in this scenario and the whole conversion chain, i.e. from the 48 V bus to the CPU/GPU/ASIC voltage, must be optimized to decrease wasted energy inside the server rack. Power density for this converters family is also paramount to consider, as the overall system must occupy as less area and volume as possible. LLC resonant converters are commonly used as IBCs (intermediate bus converters), together with their GaN implementations because of their multiple advantages in efficiency and size, while multiphase-buck-derived topologies are the most common solution to step-down-to and regulate the final processor voltage as they're well-know, easy to scale and design. This dissertation proposes a family of non-isolated, innovative converters capable of increasing the power density and the efficiency of the state-of-the-art 48 V to 1.8/0.9 V conversion. In this work three solutions are proposed, which can be combined or used as stand-alone converters: an ASIC on-chip switched-capacitor resonant voltage divider, two unregulated Google-STC-derived topologies for the IBC stage (48 V to 12 V and 48 V to 4.8 V + 10.6 V dual-output) and a complete 48 V to 1.8 V ultra-dense PoL converter. Each block has been thoroughly tested and researched, therefore mathematical and experimental results are provided for each solution, together with state-of-the-art comparisons and contextualization.Dottorato di ricerca in Ingegneria industriale e dell'informazioneopenUrsino, Mari

    Design Space Evaluation for Resonant and Hard-charged Switched Capacitor Converters

    Get PDF
    USB Power Delivery enables a fixed ratio converter to operate over a wider range of output voltages by varying the input voltage. Of the DC/DC step-down converters powered from this type of USB, the hard-charged Switched Capacitor circuit is of interest to industry for its potential high power density. However implementation can be limited by circuit efficiency. In fully resonant mode, the efficiency can be improved while also enabling current regulation. This expands the possible applications into battery chargers and eliminates the need for a two-stage converter.In this work, the trade-off in power loss and area between the hard-charged and fully resonant switched capacitor circuit is explored using a technique that remains agnostic to inductor technology. The loss model for each converter is presented as well as discussion on the restrained design space due to parasitics in the passive components. The results are validated experimentally using GaN-based prototype converters and the respective design spaces are analyzed

    Miniaturization of high frequency power converters

    Get PDF

    Design of Wireless Power Transfer and Data Telemetry System for Biomedical Applications

    Get PDF
    With the advancement of biomedical instrumentation technologies sensor based remote healthcare monitoring system is gaining more attention day by day. In this system wearable and implantable sensors are placed outside or inside of the human body. Certain sensors are needed to be placed inside the human body to acquire the information on the vital physiological phenomena such as glucose, lactate, pH, oxygen, etc. These implantable sensors have associated circuits for sensor signal processing and data transmission. Powering the circuit is always a crucial design issue. Batteries cannot be used in implantable sensors which can come in contact with the blood resulting in serious health risks. An alternate approach is to supply power wirelessly for tether-less and battery- less operation of the circuits.Inductive power transfer is the most common method of wireless power transfer to the implantable sensors. For good inductive coupling, the inductors should have high inductance and high quality factor. But the physical dimensions of the implanted inductors cannot be large due to a number of biomedical constraints. Therefore, there is a need for small sized and high inductance, high quality factor inductors for implantable sensor applications. In this work, design of a multi-spiral solenoidal printed circuit board (PCB) inductor for biomedical application is presented. The targeted frequency for power transfer is 13.56 MHz which is within the license-free industrial, scientific and medical (ISM) band. A figure of merit based optimization technique has been utilized to optimize the PCB inductors. Similar principal is applied to design on-chip inductor which could be a potential solution for further miniaturization of the implantable system. For layered human tissue the optimum frequency of power transfer is 1 GHz for smaller coil size. For this reason, design and optimization of multi-spiral solenoidal integrated inductors for 1 GHz frequency is proposed. Finally, it is demonstrated that the proposed inductors exhibit a better overall performance in comparison with the conventional inductors for biomedical applications
    corecore