1,659 research outputs found

    Optimal coverage multi-path scheduling scheme with multiple mobile sinks for WSNs

    Get PDF
    Wireless Sensor Networks (WSNs) are usually formed with many tiny sensors which are randomly deployed within sensing field for target monitoring. These sensors can transmit their monitored data to the sink in a multi-hop communication manner. However, the ‘hot spots’ problem will be caused since nodes near sink will consume more energy during forwarding. Recently, mobile sink based technology provides an alternative solution for the long-distance communication and sensor nodes only need to use single hop communication to the mobile sink during data transmission. Even though it is difficult to consider many network metrics such as sensor position, residual energy and coverage rate etc., it is still very important to schedule a reasonable moving trajectory for the mobile sink. In this paper, a novel trajectory scheduling method based on coverage rate for multiple mobile sinks (TSCR-M) is presented especially for large-scale WSNs. An improved particle swarm optimization (PSO) combined with mutation operator is introduced to search the parking positions with optimal coverage rate. Then the genetic algorithm (GA) is adopted to schedule the moving trajectory for multiple mobile sinks. Extensive simulations are performed to validate the performance of our proposed method

    E2XLRADR (Energy Efficient Cross Layer Routing Algorithm with Dynamic Retransmission for Wireless Sensor Networks)

    Full text link
    The main focus of this article is to achieve prolonged network lifetime with overall energy efficiency in wireless sensor networks through controlled utilization of limited energy. Major percentage of energy in wireless sensor network is consumed during routing from source to destination, retransmission of data on packet loss. For improvement, cross layered algorithm is proposed for routing and retransmission scheme. Simulation and results shows that this approach can save the overall energy consumptio

    Energy sink-holes avoidance method based on fuzzy system in wireless sensor networks

    Get PDF
    The existence of a mobile sink for gathering data significantly extends wireless sensor networks (WSNs) lifetime. In recent years, a variety of efficient rendezvous points-based sink mobility approaches has been proposed for avoiding the energy sink-holes problem nearby the sink, diminishing buffer overflow of sensors, and reducing the data latency. Nevertheless, lots of research has been carried out to sort out the energy holes problem using controllable-based sink mobility methods. However, further developments can be demonstrated and achieved on such type of mobility management system. In this paper, a well-rounded strategy involving an energy-efficient routing protocol along with a controllable-based sink mobility method is proposed to extirpate the energy sink-holes problem. This paper fused the fuzzy A-star as a routing protocol for mitigating the energy consumption during data forwarding along with a novel sink mobility method which adopted a grid partitioning system and fuzzy system that takes account of the average residual energy, sensors density, average traffic load, and sources angles to detect the optimal next location of the mobile sink. By utilizing diverse performance metrics, the empirical analysis of our proposed work showed an outstanding result as compared with fuzzy A-star protocol in the case of a static sink

    A Green TDMA Scheduling Algorithm for Prolonging Lifetime in Wireless Sensor Networks

    Get PDF
    Fast data collection is one of the most important research issues for Wireless Sensor Networks (WSNs). In this paper, a TMDA based energy consumption balancing algorithm is proposed for the general k-hop WSNs, where one data packet is collected in one cycle. The optimal k that achieves the longest network life is obtained through our theoretical analysis. Required time slots, maximum energy consumption and residual network energy are all thoroughly analyzed in this paper. Theoretical analysis and simulation results demonstrate the effectiveness of the proposed algorithm in terms of energy efficiency and time slot scheduling

    Cross-layer design for network performance optimization in wireless networks

    Get PDF
    In this dissertation, I use mathematical optimization approach to solve the complex network problems. Paper l and paper 2 first show that ignoring the bandwidth constraint can lead to infeasible routing solutions. A sufficient condition on link bandwidth is proposed that makes a routing solution feasible, and then a mathematical optimization model based on this sufficient condition is provided. Simulation results show that joint optimization models can provide more feasible routing solutions and provide significant improvement on throughput and lifetime. In paper 3 and paper 4, an interference model is proposed and a transmission scheduling scheme is presented to minimize the end-to-end delay. This scheduling scheme is designed based on integer linear programming and involves interference modeling. Using this schedule, there are no conflicting transmissions at any time. Through simulation, it shows that the proposed link scheduling scheme can significantly reduce end-to-end latency. Since to compute the maximum throughput is an NP-hard problem, efficient heuristics are presented in Paper 5 that use sufficient conditions instead of the computationally-expensive-to-get optimal condition to capture the mutual conflict relation in a collision domain. Both one-way transmission and two-way transmission are considered. Simulation results show that the proposed algorithms improve network throughput and reduce energy consumption, with significant improvement over previous work on both aspects. Paper 6 studies the complicated tradeoff relation among multiple factors that affect the sensor network lifetime and proposes an adaptive multi-hop clustering algorithm. It realizes the best tradeoff among multiple factors and outperforms others that do not. It is adaptive in the sense the clustering topology changes over time in order to have the maximum lifetime --Abstract, page iv
    • …
    corecore